Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000638

ABSTRACT

Lead (Pb) is a hazardous metal that poses a significant threat to both the environment and human health. The presence of Pb in food products such as honey can pose a significant risk to human health and is therefore important to detect and monitor. In this study, we propose a voltammetric detection method using molecularly imprinted polymer (MIP) electrodes to detect Pb (II) ions in honey. Pb (II) ion-imprinted amino acid-based nanoparticles with magnetic properties on a carbon paste electrode (MIP-CPE) were designed to have high sensitivity and selectivity towards Pb (II) ions in the honey sample. Zetasizer measurements, electron spin resonance, and scanning electron microscopy were used to characterize magnetic polymeric nanoparticles. The results showed that the voltammetric detection method using MIP-CPE was able to accurately detect Pb (II) ions in honey samples with a low detection limit. The proposed method offers a simple, rapid, cost-effective solution for detecting Pb (II) ions in honey. It could potentially be applied to other food products to ensure their safety for human consumption. The MIP-CPE sensor was designed to have high sensitivity and selectivity towards Pb (II) ions in the honey sample. The results showed that the technique was able to deliver highly sensitive results since seven different concentrations were prepared and detected to obtain an R2 of 0.9954, in addition to a low detection limit (LOD) of 0.0912 µM and a low quantification limit (LOQ) of 0.276 µM. Importantly, the analysis revealed no trace of Pb (II) ions in the honey samples obtained from Cyprus.

2.
Bioengineering (Basel) ; 9(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35324776

ABSTRACT

A molecularly imprinted polymer-based pencil graphite electrode (MIP PGE) sensor, modified with gold nanoparticles, was utilized for the detection of dopamine in the presence of other biochemical compounds using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), depending on its strong electroactivity function. The pulse voltammetry methods recorded the highest response. In addition to the high oxidation rate of DA and the other biomolecule interferences available in the sample matrix used, which cause overlapping voltammograms, we aimed to differentiate them in a highly sensitive limit of detection range. The calibration curves for DA were obtained using the CV and DPV over the concentration range of 0.395-3.96 nM in 0.1 M phosphate buffer solution (PBS) at pH 7.4 with a correlation coefficient of 0.996 and a detection limit of 0.193 nM. The electrochemical technique was employed to detect DA molecules quantitatively in human blood plasma selected as real samples without applying any pre-treatment processes. MIP electrodes proved their ability to detect DA with high selectivity, even with epinephrine and norepinephrine competitor molecules and interferences, such as ascorbic acid (AA). The high level of recognition achieved by molecularly imprinted polymers (MIPs) is essential for many biological and pharmaceutical studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...