Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 14360, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35999233

ABSTRACT

In cellular experiments, radiation-induced DNA damage can be quantified by counting the number of γ-H2AX foci in cell nucleus by using an immunofluorescence microscope. Quantification of DNA damage carries uncertainty, not only due to lack of full understanding the biological processes but also limitations in measurement techniques. The causes of limited certainty include the possibility of expressing foci in varying sizes responding individual DSBs and the overlapping of foci on the two-dimensional (2D) immunofluorescence microscopy image of γ-H2AX foci, especially when produced due to high-LET radiation exposure. There have been discussions on those limitations, but no successful studies to overcome them. In this paper, a practical modelling has been developed to simulate the occurrences of double-strand breaks (DSBs) and the formations of γ-H2AX foci in response to individual DSB formations, in cell nucleus due to exposure to alpha particles. Cell irradiation and DSB production were simulated using a user-written code that utilizes Geant4-DNA physics models. A C + + code was used to simulate the formation γ-H2AX foci, which were spatially correlated to the loci of DBSs, and to calculate the number of individual foci from the observed 2D image of the cell nucleus containing the overlapping γ-H2AX foci. The average size of focal images was larger from alpha particle exposure than that from X-ray exposure, whereas the number of separate focal images were comparable except at doses up to 0.5 Gy. About 40% of separate focal images consisted of overlapping γ-H2AX foci at 1 Gy of alpha particle exposure. The foci overlapping ratios were obtained by simulation for individual size groups of focal images at varying doses. The size distributions of foci at varying doses were determined with experimentally obtained separate focal images. The correction factor for foci number was calculated using the foci overlapping ratio and foci size distribution, which are specific to dose from alpha particle exposure. The number of individual foci formations induced by applying the correction factor to the experimentally observed number of focal images better reflected the quality of alpha particles in causing DNA damage. Consequently, the conventional γ-H2AX assay can be better implemented by employing this computational modelling of γ-H2AX foci formation.


Subject(s)
Alpha Particles , Histones , Alpha Particles/adverse effects , Computer Simulation , DNA Damage , DNA Repair , Dose-Response Relationship, Radiation , Histones/metabolism , Humans
2.
Sci Rep ; 11(1): 10230, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986410

ABSTRACT

Radon is a leading cause of lung cancer in indoor public and mining workers. Inhaled radon progeny releases alpha particles, which can damage cells in the airway epithelium. The extent and complexity of cellular damage vary depending on the alpha particle's kinetic energy and cell characteristics. We developed a framework to quantitate the cellular damage on the nanometer and micrometer scales at different intensities of exposure to radon progenies Po-218 and Po-214. Energy depositions along the tracks of alpha particles that were slowing down were simulated on a nanometer scale using the Monte Carlo code Geant4-DNA. The nano-scaled track histories in a 5 µm radius and 1 µm-thick cylindrical volume were integrated into the tracking scheme of alpha trajectories in a micron-scale bronchial epithelium segment in the user-written SNU-CDS program. Damage distribution in cellular DNA was estimated for six cell types in the epithelium. Deep-sited cell nuclei in the epithelium would have less chance of being hit, but DNA damage from a single hit would be more serious, because low-energy alpha particles of high LET would hit the nuclei. The greater damage in deep-sited nuclei was due to the 7.69 MeV alpha particles emitted from Po-214. From daily work under 1 WL of radon concentration, basal cells would respond with the highest portion of complex DSBs among the suspected progenitor cells in the most exposed regions of the lung epithelium.


Subject(s)
Bronchi/radiation effects , Radon/adverse effects , Respiratory Mucosa/radiation effects , Alpha Particles , Bronchi/metabolism , Epithelium/chemistry , Epithelium/radiation effects , Humans , Lung/chemistry , Lung/radiation effects , Models, Biological , Monte Carlo Method , Radiation Dosage , Radon/analysis , Radon Daughters/adverse effects , Radon Daughters/analysis , Respiratory Mucosa/chemistry , Respiratory Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...