Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cell Rep Med ; 4(5): 101045, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37196634

ABSTRACT

Post-traumatic stress disorder (PTSD) is a multisystem syndrome. Integration of systems-level multi-modal datasets can provide a molecular understanding of PTSD. Proteomic, metabolomic, and epigenomic assays are conducted on blood samples of two cohorts of well-characterized PTSD cases and controls: 340 veterans and 180 active-duty soldiers. All participants had been deployed to Iraq and/or Afghanistan and exposed to military-service-related criterion A trauma. Molecular signatures are identified from a discovery cohort of 218 veterans (109/109 PTSD+/-). Identified molecular signatures are tested in 122 separate veterans (62/60 PTSD+/-) and in 180 active-duty soldiers (PTSD+/-). Molecular profiles are computationally integrated with upstream regulators (genetic/methylation/microRNAs) and functional units (mRNAs/proteins/metabolites). Reproducible molecular features of PTSD are identified, including activated inflammation, oxidative stress, metabolic dysregulation, and impaired angiogenesis. These processes may play a role in psychiatric and physical comorbidities, including impaired repair/wound healing mechanisms and cardiovascular, metabolic, and psychiatric diseases.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Humans , Military Personnel/psychology , Veterans/psychology , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/psychology , Proteomics , Inflammation
2.
Transl Psychiatry ; 13(1): 64, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810280

ABSTRACT

Post-traumatic stress disorder (PTSD) is a mental disorder diagnosed by clinical interviews, self-report measures and neuropsychological testing. Traumatic brain injury (TBI) can have neuropsychiatric symptoms similar to PTSD. Diagnosing PTSD and TBI is challenging and more so for providers lacking specialized training facing time pressures in primary care and other general medical settings. Diagnosis relies heavily on patient self-report and patients frequently under-report or over-report their symptoms due to stigma or seeking compensation. We aimed to create objective diagnostic screening tests utilizing Clinical Laboratory Improvement Amendments (CLIA) blood tests available in most clinical settings. CLIA blood test results were ascertained in 475 male veterans with and without PTSD and TBI following warzone exposure in Iraq or Afghanistan. Using random forest (RF) methods, four classification models were derived to predict PTSD and TBI status. CLIA features were selected utilizing a stepwise forward variable selection RF procedure. The AUC, accuracy, sensitivity, and specificity were 0.730, 0.706, 0.659, and 0.715, respectively for differentiating PTSD and healthy controls (HC), 0.704, 0.677, 0.671, and 0.681 for TBI vs. HC, 0.739, 0.742, 0.635, and 0.766 for PTSD comorbid with TBI vs HC, and 0.726, 0.723, 0.636, and 0.747 for PTSD vs. TBI. Comorbid alcohol abuse, major depressive disorder, and BMI are not confounders in these RF models. Markers of glucose metabolism and inflammation are among the most significant CLIA features in our models. Routine CLIA blood tests have the potential for discriminating PTSD and TBI cases from healthy controls and from each other. These findings hold promise for the development of accessible and low-cost biomarker tests as screening measures for PTSD and TBI in primary care and specialty settings.


Subject(s)
Brain Injuries, Traumatic , Depressive Disorder, Major , Stress Disorders, Post-Traumatic , Veterans , Humans , Male , Stress Disorders, Post-Traumatic/psychology , Veterans/psychology , Laboratories, Clinical , Hematologic Tests
3.
Psychoneuroendocrinology ; 134: 105360, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34757255

ABSTRACT

Attempts to correlate blood levels of brain-derived neurotrophic factor (BDNF) with post-traumatic stress disorder (PTSD) have provided conflicting results. Some studies found a positive association between BDNF and PTSD diagnosis and symptom severity, while others found the association to be negative. The present study investigated whether serum levels of BDNF are different cross-sectionally between combat trauma-exposed veterans with and without PTSD, as well as whether longitudinal changes in serum BDNF differ as a function of PTSD diagnosis over time. We analyzed data of 270 combat trauma-exposed veterans (230 males, 40 females, average age: 33.29 ± 8.28 years) and found that, at the initial cross-sectional assessment (T0), which averaged 6 years after the initial exposure to combat trauma (SD=2.83 years), the PTSD positive group had significantly higher serum BDNF levels than the PTSD negative controls [31.03 vs. 26.95 ng/mL, t(268) = 3.921, p < 0.001]. This difference remained significant after excluding individuals with comorbid major depressive disorder, antidepressant users and controlling for age, gender, race, BMI, and time since trauma. Fifty-nine of the male veterans who participated at the first timepoint (T0) were re-assessed at follow-up evaluation (T1), approximately 3 years (SD=0.88 years) after T0. A one-way ANOVA comparing PTSD positive, "subthreshold PTSD" and control groups revealed that serum BDNF remained significantly higher in the PTSD positive group than the control group at T1 [30.05 vs 24.66 ng/mL, F(2, 56)= 3.420, p = 0.040]. Serum BDNF levels did not correlate with PTSD symptom severity at either time point within the PTSD group [r(128) = 0.062, p = 0.481 and r(28) = 0.157, p = 0.407]. Serum BDNF did not significantly change over time within subjects [t(56) = 1.269, p = 0.210] nor did the change of serum BDNF from T0 to T1 correlate with change in PTSD symptom severity within those who were diagnosed with PTSD at T0 [r(27) = -0.250, p = 0.192]. Our longitudinal data are the first to be reported in combat PTSD and suggest that higher serum BDNF levels may be a stable biological characteristic of chronic combat PTSD independent of symptom severity.

4.
Transl Psychiatry ; 11(1): 227, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879773

ABSTRACT

We sought to find clinical subtypes of posttraumatic stress disorder (PTSD) in veterans 6-10 years post-trauma exposure based on current symptom assessments and to examine whether blood biomarkers could differentiate them. Samples were males deployed to Iraq and Afghanistan studied by the PTSD Systems Biology Consortium: a discovery sample of 74 PTSD cases and 71 healthy controls (HC), and a validation sample of 26 PTSD cases and 36 HC. A machine learning method, random forests (RF), in conjunction with a clustering method, partitioning around medoids, were used to identify subtypes derived from 16 self-report and clinician assessment scales, including the clinician-administered PTSD scale for DSM-IV (CAPS). Two subtypes were identified, designated S1 and S2, differing on mean current CAPS total scores: S2 = 75.6 (sd 14.6) and S1 = 54.3 (sd 6.6). S2 had greater symptom severity scores than both S1 and HC on all scale items. The mean first principal component score derived from clinical summary scales was three times higher in S2 than in S1. Distinct RFs were grown to classify S1 and S2 vs. HCs and vs. each other on multi-omic blood markers feature classes of current medical comorbidities, neurocognitive functioning, demographics, pre-military trauma, and psychiatric history. Among these classes, in each RF intergroup comparison of S1, S2, and HC, multi-omic biomarkers yielded the highest AUC-ROCs (0.819-0.922); other classes added little to further discrimination of the subtypes. Among the top five biomarkers in each of these RFs were methylation, micro RNA, and lactate markers, suggesting their biological role in symptom severity.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Diagnostic and Statistical Manual of Mental Disorders , Humans , Machine Learning , Male , Stress Disorders, Post-Traumatic/diagnosis
5.
Neuropsychopharmacology ; 46(9): 1635-1642, 2021 08.
Article in English | MEDLINE | ID: mdl-33500557

ABSTRACT

Anger is a common and debilitating symptom of post-traumatic stress disorder (PTSD). Although studies have identified brain circuits underlying anger experience and expression in healthy individuals, how these circuits interact with trauma remains unclear. Here, we performed the first study examining the neural correlates of anger in patients with PTSD. Using a data-driven approach with resting-state fMRI, we identified two prefrontal regions whose overall functional connectivity was inversely associated with anger: the left anterior middle frontal gyrus (aMFG) and the right orbitofrontal cortex (OFC). We then used concurrent TMS-EEG to target the left aMFG parcel previously identified through fMRI, measuring its cortical excitability and causal connectivity to downstream areas. We found that low-anger PTSD patients exhibited enhanced excitability in the left aMFG and enhanced causal connectivity between this region and visual areas. Together, our results suggest that left aMFG activity may confer protection against the development of anger, and therefore may be an intriguing target for circuit-based interventions for anger in PTSD.


Subject(s)
Stress Disorders, Post-Traumatic , Anger , Brain , Humans , Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic/diagnostic imaging
6.
Mol Psychiatry ; 26(8): 4300-4314, 2021 08.
Article in English | MEDLINE | ID: mdl-33339956

ABSTRACT

Post-traumatic stress disorder (PTSD) is a heterogeneous condition evidenced by the absence of objective physiological measurements applicable to all who meet the criteria for the disorder as well as divergent responses to treatments. This study capitalized on biological diversity observed within the PTSD group observed following epigenome-wide analysis of a well-characterized Discovery cohort (N = 166) consisting of 83 male combat exposed veterans with PTSD, and 83 combat veterans without PTSD in order to identify patterns that might distinguish subtypes. Computational analysis of DNA methylation (DNAm) profiles identified two PTSD biotypes within the PTSD+ group, G1 and G2, associated with 34 clinical features that are associated with PTSD and PTSD comorbidities. The G2 biotype was associated with an increased PTSD risk and had higher polygenic risk scores and a greater methylation compared to the G1 biotype and healthy controls. The findings were validated at a 3-year follow-up (N = 59) of the same individuals as well as in two independent, veteran cohorts (N = 54 and N = 38), and an active duty cohort (N = 133). In some cases, for example Dopamine-PKA-CREB and GABA-PKC-CREB signaling pathways, the biotypes were oppositely dysregulated, suggesting that the biotypes were not simply a function of a dimensional relationship with symptom severity, but may represent distinct biological risk profiles underpinning PTSD. The identification of two novel distinct epigenetic biotypes for PTSD may have future utility in understanding biological and clinical heterogeneity in PTSD and potential applications in risk assessment for active duty military personnel under non-clinician-administered settings, and improvement of PTSD diagnostic markers.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Epigenesis, Genetic/genetics , Epigenome , Humans , Male , Stress Disorders, Post-Traumatic/genetics
7.
Mol Psychiatry ; 26(9): 5011-5022, 2021 09.
Article in English | MEDLINE | ID: mdl-32488126

ABSTRACT

Active-duty Army personnel can be exposed to traumatic warzone events and are at increased risk for developing post-traumatic stress disorder (PTSD) compared with the general population. PTSD is associated with high individual and societal costs, but identification of predictive markers to determine deployment readiness and risk mitigation strategies is not well understood. This prospective longitudinal naturalistic cohort study-the Fort Campbell Cohort study-examined the value of using a large multidimensional dataset collected from soldiers prior to deployment to Afghanistan for predicting post-deployment PTSD status. The dataset consisted of polygenic, epigenetic, metabolomic, endocrine, inflammatory and routine clinical lab markers, computerized neurocognitive testing, and symptom self-reports. The analysis was computed on active-duty Army personnel (N = 473) of the 101st Airborne at Fort Campbell, Kentucky. Machine-learning models predicted provisional PTSD diagnosis 90-180 days post deployment (random forest: AUC = 0.78, 95% CI = 0.67-0.89, sensitivity = 0.78, specificity = 0.71; SVM: AUC = 0.88, 95% CI = 0.78-0.98, sensitivity = 0.89, specificity = 0.79) and longitudinal PTSD symptom trajectories identified with latent growth mixture modeling (random forest: AUC = 0.85, 95% CI = 0.75-0.96, sensitivity = 0.88, specificity = 0.69; SVM: AUC = 0.87, 95% CI = 0.79-0.96, sensitivity = 0.80, specificity = 0.85). Among the highest-ranked predictive features were pre-deployment sleep quality, anxiety, depression, sustained attention, and cognitive flexibility. Blood-based biomarkers including metabolites, epigenomic, immune, inflammatory, and liver function markers complemented the most important predictors. The clinical prediction of post-deployment symptom trajectories and provisional PTSD diagnosis based on pre-deployment data achieved high discriminatory power. The predictive models may be used to determine deployment readiness and to determine novel pre-deployment interventions to mitigate the risk for deployment-related PTSD.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Afghanistan , Cohort Studies , Humans , Machine Learning , Prospective Studies , Risk Factors , Sleep Quality
8.
Mol Psychiatry ; 26(9): 4999-5009, 2021 09.
Article in English | MEDLINE | ID: mdl-32382136

ABSTRACT

DNA methylation patterns at specific cytosine-phosphate-guanine (CpG) sites predictably change with age and can be used to derive "epigenetic age", an indicator of biological age, as opposed to merely chronological age. A relatively new estimator, called "DNAm GrimAge", is notable for its superior predictive ability in older populations regarding numerous age-related metrics like time-to-death, time-to-coronary heart disease, and time-to-cancer. PTSD is associated with premature mortality and frequently has comorbid physical illnesses suggestive of accelerated biological aging. This is the first study to assess DNAm GrimAge in PTSD patients. We investigated the acceleration of GrimAge relative to chronological age, denoted "AgeAccelGrim" in combat trauma-exposed male veterans with and without PTSD using cross-sectional and longitudinal data from two independent well-characterized veteran cohorts. In both cohorts, AgeAccelGrim was significantly higher in the PTSD group compared to the control group (N = 162, 1.26 vs -0.57, p = 0.001 and N = 53, 0.93 vs -1.60 Years, p = 0.008), suggesting accelerated biological aging in both cohorts with PTSD. In 3-year follow-up study of individuals initially diagnosed with PTSD (N = 26), changes in PTSD symptom severity were correlated with AgeAccelGrim changes (r = 0.39, p = 0.049). In addition, the loss of CD28 cell surface markers on CD8 + T cells, an indicator of T-cell senescence/exhaustion that is associated with biological aging, was positively correlated with AgeAccelGrim, suggesting an immunological contribution to the accelerated biological aging. Overall, our findings delineate cellular correlates of biological aging in combat-related PTSD, which may help explain the increased medical morbidity and mortality seen in this disease.


Subject(s)
DNA Methylation , Stress Disorders, Post-Traumatic , Aged , Aging/genetics , Cross-Sectional Studies , DNA Methylation/genetics , Epigenesis, Genetic , Epigenomics , Follow-Up Studies , Humans , Male , Stress Disorders, Post-Traumatic/genetics
9.
Psychiatr Res Clin Pract ; 3(4): 153-162, 2021.
Article in English | MEDLINE | ID: mdl-35211666

ABSTRACT

BACKGROUND AND OBJECTIVE: Posttraumatic stress disorder (PTSD) is a serious and frequently debilitating psychiatric condition that can occur in people who have experienced traumatic stessors, such as war, violence, sexual assault and other life-threatening events. Treatment of PTSD and traumatic brain injury (TBI) in veterans is challenged by diagnostic complexity, partially due to PTSD and TBI symptom overlap and to the fact that subjective self-report assessments may be influenced by a patient's willingness to share their traumatic experiences and resulting symptoms. Corticotropin-releasing factor (CRF) is one of the main mediators of hypothalamic pituitary adrenal (HPA)-axis responses in stress and anxiety. METHODS AND RESULTS: We analyzed serum CRF levels in 230 participants including heathy controls (64), and individuals with PTSD (53), TBI (70) or PTSD+TBI (43) by enzyme immunoassay (EIA). Significantly lower CRF levels were found in both the PTSD and PTSD+TBI groups compared to healthy control (PTSD vs Controls: P=0.0014, PTSD + TBI vs Controls: P=0.0011) and chronic TBI participants (PTSD vs TBI: P<0.0001PTSD + TBI vs TBI: P<0.0001) , suggesting a PTSD-related mechanism independent from TBI and associated with CRF reduction. CRF levels negatively correlated with PTSD severity on the CAPS-5 scale in the whole study group. CONCLUSIONS: Hyperactivation of the HPA axis has been classically identified in acute stress. However, the recognized enhanced feedback inhibition of the HPA axis in chronic stress supports our findings of lower CRF in PTSD patients. This study suggests that reduced serum CRF in PTSD should be further investigated. Future validation studies will establish if CRF is a possible blood biomarker for PTSD and/or for differentiating PTSD and chronic TBI symptomatology.

11.
Article in English | MEDLINE | ID: mdl-32439402

ABSTRACT

BACKGROUND: Traumatic stress can adversely affect physical and mental health through neurobiological stress response systems. We examined the effects of trauma exposure and posttraumatic stress disorder (PTSD) on telomere length, a biomarker of cellular aging, and volume of the amygdala, a key structure of stress regulation, in combat-exposed veterans. In addition, the relationships of psychopathological symptoms and autonomic function with telomere length and amygdala volume were examined. METHODS: Male combat veterans were categorized as having PTSD diagnosis (n = 102) or no lifetime PTSD diagnosis (n = 111) based on the Clinician-Administered PTSD Scale. Subjects were assessed for stress-related psychopathology, trauma severity, autonomic function, and amygdala volumes by magnetic resonance imaging. RESULTS: A significant interaction was found between trauma severity and PTSD status for telomere length and amygdala volume after adjusting for multiple confounders. Subjects with PTSD showed shorter telomere length and larger amygdala volume than those without PTSD among veterans exposed to high trauma, while there was no significant group difference in these parameters among those exposed to low trauma. Among veterans exposed to high trauma, greater telomere shortening was significantly correlated with greater norepinephrine, and larger amygdala volume was correlated with more severe psychological symptoms and higher heart rates. CONCLUSIONS: These data suggest that the intensity of the index trauma event plays an important role in interacting with PTSD symptomatology and autonomic activity in predicting telomere length and amygdala volume. These results highlight the importance of trauma severity and PTSD status in predicting certain biological outcomes.


Subject(s)
Combat Disorders , Stress Disorders, Post-Traumatic , Amygdala , Humans , Male , Telomere , Veterans
12.
Am J Psychiatry ; 177(3): 233-243, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31964161

ABSTRACT

OBJECTIVE: The authors sought to identify brain regions whose frequency-specific, orthogonalized resting-state EEG power envelope connectivity differs between combat veterans with posttraumatic stress disorder (PTSD) and healthy combat-exposed veterans, and to determine the behavioral correlates of connectomic differences. METHODS: The authors first conducted a connectivity method validation study in healthy control subjects (N=36). They then conducted a two-site case-control study of veterans with and without PTSD who were deployed to Iraq and/or Afghanistan. Healthy individuals (N=95) and those meeting full or subthreshold criteria for PTSD (N=106) underwent 64-channel resting EEG (eyes open and closed), which was then source-localized and orthogonalized to mitigate effects of volume conduction. Correlation coefficients between band-limited source-space power envelopes of different regions of interest were then calculated and corrected for multiple comparisons. Post hoc correlations of connectomic abnormalities with clinical features and performance on cognitive tasks were conducted to investigate the relevance of the dysconnectivity findings. RESULTS: Seventy-four brain region connections were significantly reduced in PTSD (all in the eyes-open condition and predominantly using the theta carrier frequency). Underconnectivity of the orbital and anterior middle frontal gyri were most prominent. Performance differences in the digit span task mapped onto connectivity between 25 of the 74 brain region pairs, including within-network connections in the dorsal attention, frontoparietal control, and ventral attention networks. CONCLUSIONS: Robust PTSD-related abnormalities were evident in theta-band source-space orthogonalized power envelope connectivity, which furthermore related to cognitive deficits in these patients. These findings establish a clinically relevant connectomic profile of PTSD using a tool that facilitates the lower-cost clinical translation of network connectivity research.


Subject(s)
Brain/physiopathology , Nerve Net/physiopathology , Stress Disorders, Post-Traumatic/physiopathology , Adult , Case-Control Studies , Connectome , Electroencephalography , Female , Humans , Male , Veterans , Young Adult
13.
Mol Psychiatry ; 25(12): 3337-3349, 2020 12.
Article in English | MEDLINE | ID: mdl-31501510

ABSTRACT

Post-traumatic stress disorder (PTSD) impacts many veterans and active duty soldiers, but diagnosis can be problematic due to biases in self-disclosure of symptoms, stigma within military populations, and limitations identifying those at risk. Prior studies suggest that PTSD may be a systemic illness, affecting not just the brain, but the entire body. Therefore, disease signals likely span multiple biological domains, including genes, proteins, cells, tissues, and organism-level physiological changes. Identification of these signals could aid in diagnostics, treatment decision-making, and risk evaluation. In the search for PTSD diagnostic biomarkers, we ascertained over one million molecular, cellular, physiological, and clinical features from three cohorts of male veterans. In a discovery cohort of 83 warzone-related PTSD cases and 82 warzone-exposed controls, we identified a set of 343 candidate biomarkers. These candidate biomarkers were selected from an integrated approach using (1) data-driven methods, including Support Vector Machine with Recursive Feature Elimination and other standard or published methodologies, and (2) hypothesis-driven approaches, using previous genetic studies for polygenic risk, or other PTSD-related literature. After reassessment of ~30% of these participants, we refined this set of markers from 343 to 28, based on their performance and ability to track changes in phenotype over time. The final diagnostic panel of 28 features was validated in an independent cohort (26 cases, 26 controls) with good performance (AUC = 0.80, 81% accuracy, 85% sensitivity, and 77% specificity). The identification and validation of this diverse diagnostic panel represents a powerful and novel approach to improve accuracy and reduce bias in diagnosing combat-related PTSD.


Subject(s)
Military Personnel , Stress Disorders, Post-Traumatic , Veterans , Biomarkers , Brain , Humans , Male , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/genetics
14.
Neuropsychology ; 34(3): 276-287, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31789568

ABSTRACT

OBJECTIVE: The Fort Campbell Cohort study was designed to assess predeployment biological and behavioral markers and build predictive models to identify risk and resilience for posttraumatic stress disorder (PTSD) following deployment. This article addresses neurocognitive functioning variables as potential prospective predictors. METHOD: In a sample of 403 soldiers, we examined whether PTSD symptom severity (using the PTSD Checklist) as well as posttraumatic stress trajectories could be prospectively predicted by measures of executive functioning (using two web-based tasks from WebNeuro) assessed predeployment. RESULTS: Controlling for age, gender, education, prior number of deployments, childhood trauma exposure, and PTSD symptom severity at Phase 1, linear regression models revealed that predeployment sustained attention and inhibitory control performance were significantly associated with postdeployment PTSD symptom severity. We also identified two posttraumatic stress trajectories utilizing latent growth mixture models. The "resilient" group consisted of 90.9% of the soldiers who exhibited stable low levels of PTSD symptoms from pre- to postdeployment. The "increasing" group consisted of 9.1% of the soldiers, who exhibited an increase in PTSD symptoms following deployment, crossing a threshold for diagnosis based on PTSD Checklist scores. Logistic regression models predicting trajectory revealed a similar pattern of findings as the linear regression models, in which predeployment sustained attention (95% CI of odds ratio: 1.0109, 1.0558) and inhibitory control (95% CI: 1.0011, 1.0074) performance were significantly associated with postdeployment PTSD trajectory. CONCLUSIONS: These findings have clinical implications for understanding the pathogenesis of PTSD and building preventative programs for military personnel. (PsycINFO Database Record (c) 2020 APA, all rights reserved).


Subject(s)
Cognition , Military Personnel/psychology , Stress Disorders, Post-Traumatic/psychology , Adult , Afghan Campaign 2001- , Child , Child Abuse/psychology , Cohort Studies , Executive Function , Female , Humans , Longitudinal Studies , Male , Predictive Value of Tests , Prospective Studies , Resilience, Psychological , Self Report , Young Adult
15.
Am J Psychiatry ; 177(3): 244-253, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31838870

ABSTRACT

OBJECTIVE: A major challenge in understanding and treating posttraumatic stress disorder (PTSD) is its clinical heterogeneity, which is likely determined by various neurobiological perturbations. This heterogeneity likely also reduces the effectiveness of standard group comparison approaches. The authors tested whether a statistical approach aimed at identifying individual-level neuroimaging abnormalities that are more prevalent in case subjects than in control subjects could reveal new clinically meaningful insights into the heterogeneity of PTSD. METHODS: Resting-state functional MRI data were recorded from 87 unmedicated PTSD case subjects and 105 war zone-exposed healthy control subjects. Abnormalities were modeled using tolerance intervals, which referenced the distribution of healthy control subjects as the "normative population." Out-of-norm functional connectivity values were examined for enrichment in cases and then used in a clustering analysis to identify biologically defined PTSD subgroups based on their abnormality profiles. RESULTS: The authors identified two subgroups among PTSD cases, each with a distinct pattern of functional connectivity abnormalities with respect to healthy control subjects. Subgroups differed clinically on levels of reexperiencing symptoms and improved case-control discriminability and were detectable using independently recorded resting-state EEG data. CONCLUSIONS: The results provide proof of concept for the utility of abnormality-based approaches for studying heterogeneity within clinical populations. Such approaches, applied not only to neuroimaging data, may allow detection of subpopulations with distinct biological signatures so that further clinical and mechanistic investigations can be focused on more biologically homogeneous subgroups.


Subject(s)
Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Adult , Case-Control Studies , Connectome , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Rest , Stress Disorders, Post-Traumatic/psychology , Veterans
16.
PLoS One ; 14(10): e0223065, 2019.
Article in English | MEDLINE | ID: mdl-31600258

ABSTRACT

Peripheral Blood gene expression is widely used in the discovery of biomarkers and development of therapeutics. Recently, a spate of commercial blood collection and preservation systems have been introduced with proprietary variations that may differentially impact the transcriptomic profiles. Comparative analysis of these collection platforms will help optimize protocols to detect, identify, and reproducibly validate true biological variance among subjects. In the current study, we tested two recently introduced whole blood collection methods, RNAgard® and PAXgene® RNA, in addition to the traditional method of peripheral blood mononuclear cells (PBMCs) separated from whole blood and preserved in Trizol reagent. Study results revealed striking differences in the transcriptomic profiles from the three different methods that imply ex vivo changes in gene expression occurred during the blood collection, preservation, and mRNA extraction processes. When comparing the ability of the three preservation methods to accurately capture individuals' expression differences, RNAgard® outperformed PAXgene® RNA, and both showed better individual separation of transcriptomic profiles than PBMCs. Hence, our study recommends using a single blood collection platform, and strongly cautions against combining methods during the course of a defined study.


Subject(s)
Biomarkers/blood , Gene Expression Profiling/methods , RNA/blood , Transcriptome/genetics , Blood Specimen Collection , Gene Expression Regulation/genetics , Humans , Leukocytes, Mononuclear/metabolism , Oligonucleotide Array Sequence Analysis , RNA/genetics , RNA, Messenger/blood , RNA, Messenger/genetics
17.
Am J Physiol Endocrinol Metab ; 317(5): E879-E898, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31322414

ABSTRACT

Posttraumatic stress disorder (PTSD) is associated with neuroendocrine alterations and metabolic abnormalities; however, how metabolism is affected by neuroendocrine disturbances is unclear. The data from combat-exposed veterans with PTSD show increased glycolysis to lactate flux, reduced TCA cycle flux, impaired amino acid and lipid metabolism, insulin resistance, inflammation, and hypersensitive hypothalamic-pituitary-adrenal (HPA) axis. To analyze whether the co-occurrence of multiple metabolic abnormalities is independent or arises from an underlying regulatory defect, we employed a systems biological approach using an integrated mathematical model and multiomic analysis. The models for hepatic metabolism, HPA axis, inflammation, and regulatory signaling were integrated to perform metabolic control analysis (MCA) with respect to the observations from our clinical data. We combined the metabolomics, neuroendocrine, clinical laboratory, and cytokine data from combat-exposed veterans with and without PTSD to characterize the differences in regulatory effects. MCA revealed mechanistic association of the HPA axis and inflammation with metabolic dysfunction consistent with PTSD. This was supported by the data using correlational and causal analysis that revealed significant associations between cortisol suppression, high-sensitivity C-reactive protein, homeostatic model assessment of insulin resistance, γ-glutamyltransferase, hypoxanthine, and several metabolites. Causal mediation analysis indicates that the effects of enhanced glucocorticoid receptor sensitivity (GRS) on glycolytic pathway, gluconeogenic and branched-chain amino acids, triglycerides, and hepatic function are jointly mediated by inflammation, insulin resistance, oxidative stress, and energy deficit. Our analysis suggests that the interventions to normalize GRS and inflammation may help to manage features of metabolic dysfunction in PTSD.


Subject(s)
Metabolic Diseases/metabolism , Receptors, Glucocorticoid/metabolism , Stress Disorders, Post-Traumatic/metabolism , Adult , Cytokines/metabolism , Glycolysis , Humans , Hypothalamo-Hypophyseal System/metabolism , Liver/metabolism , Male , Metabolomics , Middle Aged , Models, Theoretical , Neurosecretory Systems/metabolism , Systems Biology , Veterans , Young Adult
18.
J Clin Med ; 8(7)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31277223

ABSTRACT

Dysregulation of circulating microRNAs (miRNAs) in body fluids has been reported in psychiatric disorders such as schizophrenia, bipolar disorder, major depressive disorder, and post-traumatic stress disorder (PTSD). Recent studies of various diseases showed that extracellular vesicles (EV) in body fluids can provide different spectra of circulating miRNAs and disease-associated signatures from whole fluid or EV-depleted fraction. However, the association of miRNAs in EVs to PTSD has not been studied. In this study, we performed a comprehensive profiling of miRNAs in whole plasma, extracellular vesicles (EV) and EV-depleted plasma (EVD) samples collected from combat veterans with PTSD and matched controls by utilizing a next-generation sequencing (NGS) platform. In total, 520 circulating miRNAs were quantified from 24 male Iraq and Afghanistan combat veterans with (n = 12) and without (n = 12) PTSD. The overall miRNA profiles in whole plasma, EV and EVD fractions were different and miRNAs affected by PTSD were also distinct in each sample type. The concentration changes of miR-203a-3p in EV and miR-339-5p in EVD were confirmed in an independent validation cohort that consisted of 20 veterans (10 with and 10 without PTSD) using qPCR. The target genes of these two miRNAs were involved in signaling pathways and comorbid conditions associated with PTSD (e.g., neurotransmitter systems such as dopaminergic and serotonergic signaling, inflammatory response, and cardiovascular diseases). Our findings suggest that PTSD may have different impacts on miRNAs encapsulated in vesicles and outside of vesicles. Further studies using larger samples are needed to evaluate the utility of these miRNAs as diagnostic biomarkers for PTSD.

19.
Transl Psychiatry ; 9(1): 165, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31175274

ABSTRACT

Post-traumatic stress disorder (PTSD) is a psychiatric illness with a highly polygenic architecture without large effect-size common single-nucleotide polymorphisms (SNPs). Thus, to capture a substantial portion of the genetic contribution, effects from many variants need to be aggregated. We investigated various aspects of one such approach that has been successfully applied to many traits, polygenic risk score (PRS) for PTSD. Theoretical analyses indicate the potential prediction ability of PRS. We used the latest summary statistics from the largest published genome-wide association study (GWAS) conducted by Psychiatric Genomics Consortium for PTSD (PGC-PTSD). We found that the PRS constructed for a cohort comprising veterans of recent wars (n = 244) explains a considerable proportion of PTSD onset (Nagelkerke R2 = 4.68%, P = 0.003) and severity (R2 = 4.35%, P = 0.0008) variances. However, the performance on an African ancestry sub-cohort was minimal. A PRS constructed with schizophrenia GWAS also explained a significant fraction of PTSD diagnosis variance (Nagelkerke R2 = 2.96%, P = 0.0175), confirming previously reported genetic correlation between the two psychiatric ailments. Overall, these findings demonstrate the important role polygenic analyses of PTSD will play in risk prediction models as well as in elucidating the biology of the disorder.


Subject(s)
Genetic Predisposition to Disease , Severity of Illness Index , Stress Disorders, Post-Traumatic/genetics , Stress Disorders, Post-Traumatic/physiopathology , Veterans , Adult , Biomarkers , Cohort Studies , Female , Genome-Wide Association Study , Humans , Male , Risk , United States
20.
Depress Anxiety ; 36(7): 607-616, 2019 07.
Article in English | MEDLINE | ID: mdl-31006959

ABSTRACT

BACKGROUND: The diagnosis of posttraumatic stress disorder (PTSD) is usually based on clinical interviews or self-report measures. Both approaches are subject to under- and over-reporting of symptoms. An objective test is lacking. We have developed a classifier of PTSD based on objective speech-marker features that discriminate PTSD cases from controls. METHODS: Speech samples were obtained from warzone-exposed veterans, 52 cases with PTSD and 77 controls, assessed with the Clinician-Administered PTSD Scale. Individuals with major depressive disorder (MDD) were excluded. Audio recordings of clinical interviews were used to obtain 40,526 speech features which were input to a random forest (RF) algorithm. RESULTS: The selected RF used 18 speech features and the receiver operating characteristic curve had an area under the curve (AUC) of 0.954. At a probability of PTSD cut point of 0.423, Youden's index was 0.787, and overall correct classification rate was 89.1%. The probability of PTSD was higher for markers that indicated slower, more monotonous speech, less change in tonality, and less activation. Depression symptoms, alcohol use disorder, and TBI did not meet statistical tests to be considered confounders. CONCLUSIONS: This study demonstrates that a speech-based algorithm can objectively differentiate PTSD cases from controls. The RF classifier had a high AUC. Further validation in an independent sample and appraisal of the classifier to identify those with MDD only compared with those with PTSD comorbid with MDD is required.


Subject(s)
Algorithms , Speech/physiology , Stress Disorders, Post-Traumatic/diagnosis , Stress Disorders, Post-Traumatic/physiopathology , Adult , Area Under Curve , Female , Humans , Male , ROC Curve , Stress Disorders, Post-Traumatic/complications , Veterans
SELECTION OF CITATIONS
SEARCH DETAIL
...