Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytogenet Genome Res ; 139(3): 206-14, 2013.
Article in English | MEDLINE | ID: mdl-23548567

ABSTRACT

Advanced omics technologies such as deep sequencing and spectral karyotyping are revealing more of cancer heterogeneity at the genetic, genomic, gene expression, epigenetic, proteomic, and metabolomic levels. With this increasing body of emerging data, the task of data analysis becomes critical for mining and modeling to better understand the relevant underlying biological processes. However, the multiple levels of heterogeneity evident within and among populations, healthy and diseased, complicate the mining and interpretation of biological data, especially when dealing with hundreds to tens of thousands of variables. Heterogeneity occurs in many diseases, such as cancers, autism, macular degeneration, and others. In cancer, heterogeneity has hampered the search for validated biomarkers for early detection, and it has complicated the task of finding clonal (driver) and nonclonal (nonexpanded or passenger) aberrations. We show that subtyping of cancer (classification of specimens) should be an a priori step to the identification of early events of cancers. Studying early events in oncogenesis can be done on histologically normal tissues from diseased individuals (HNTDI), since they most likely have been exposed to the same mutagenic insults that caused the cancer in their neighboring tissues. Polarity assessment of HNTDI data variables by using healthy specimens as outgroup(s), followed by the application of parsimony phylogenetic analysis, produces a hierarchical classification of specimens that reveals the early events of the disease ontogeny within its subtypes as shared derived changes (abnormal changes) or synapomorphies in phylogenetic terminology.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Systems Biology/methods , Breast Neoplasms/surgery , Female , Humans , Oligonucleotide Array Sequence Analysis , Phylogeny , Reference Values
2.
Cell Death Dis ; 3: e340, 2012 Jul 05.
Article in English | MEDLINE | ID: mdl-22764099

ABSTRACT

Anticancer phospholipids that inhibit Akt such as the alkylphospholipid perifosine (Per) and phosphatidylinositol ether lipid analogs (PIAs) promote cellular detachment and apoptosis and have a similar cytotoxicity profile against cancer cell lines in the NCI60 panel. While investigating the mechanism of Akt inhibition, we found that short-term incubation with these compounds induced rapid shedding of cellular nanovesicles containing EGFR, IGFR and p-Akt that occurred in vitro and in vivo, while prolonged incubation led to cell detachment and death that depended on sphingomyelinase-mediated generation of ceramide. Pretreatment with sphingomyelinase inhibitors blocked ceramide generation, decreases in phospho-Akt, nanovesicle release and cell detachment in response to alkylphospholipids and PIAs in non-small cell lung cancer cell lines. Similarly, exogenous ceramide also decreased active Akt and induced nanovesicle release. Knockdown of neutral sphingomyelinase decreased, whereas overexpression of neutral or acid sphingomyelinase increased cell detachment and death in response to the compounds. When transferred in vitro, PIA or Per-induced nanovesicles increased ceramide levels and death in recipient cells. These results indicate ceramide generation underlies the Akt inhibition and cytotoxicity of this group of agents, and suggests nanovesicle shedding and uptake might potentially propagate their cytotoxicity in vivo.


Subject(s)
Antineoplastic Agents/toxicity , Apoptosis/drug effects , Ceramides/metabolism , Phosphatidylinositol Phosphates/toxicity , Phosphorylcholine/analogs & derivatives , Secretory Vesicles/metabolism , Animals , Cell Line, Tumor , ErbB Receptors/metabolism , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Phosphorylcholine/chemistry , Phosphorylcholine/therapeutic use , Phosphorylcholine/toxicity , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyridines/therapeutic use , Pyridines/toxicity , RNA Interference , RNA, Small Interfering/metabolism , Receptor, IGF Type 1/metabolism , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...