Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Neurol ; 71(4): 498-508, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22213401

ABSTRACT

OBJECTIVE: Genomic duplications that lead to autism and other human diseases are interesting pathological lesions since the underlying mechanism almost certainly involves dosage sensitive genes. We aim to understand a novel genomic disorder with profound phenotypic consequences, most notably global developmental delay, autism, psychosis, and anorexia nervosa. METHODS: We evaluated the affected individuals, all maternally related, using childhood autism rating scale (CARS) and Vineland Adaptive scales, magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) brain, electroencephalography (EEG), electromyography (EMG), muscle biopsy, high-resolution molecular karyotype arrays, Giemsa banding (G-banding) and fluorescent in situ hybridization (FISH) experiments, mitochondrial DNA (mtDNA) sequencing, X-chromosome inactivation study, global gene expression analysis on Epstein-Barr virus (EBV)-transformed lymphoblasts, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). RESULTS: We have identified a novel Xq12-q13.3 duplication in an extended family. Clinically normal mothers were completely skewed in favor of the normal chromosome X. Global transcriptional profiling of affected individuals and controls revealed significant alterations of genes and pathways in a pattern consistent with previous microarray studies of autism spectrum disorder patients. Moreover, expression analysis revealed copy number-dependent increased messenger RNA (mRNA) levels in affected patients compared to control individuals. A subset of differentially expressed genes was validated using qRT-PCR. INTERPRETATION: Xq12-q13.3 duplication is a novel global developmental delay and autism-predisposing chromosomal aberration; pathogenesis of which may be mediated by increased dosage of genes contained in the duplication, including NLGN3, OPHN1, AR, EFNB1, TAF1, GJB1, and MED12.


Subject(s)
Child Development Disorders, Pervasive/genetics , Chromosomes, Human, X/genetics , Developmental Disabilities/genetics , Genetic Diseases, X-Linked/genetics , Abnormal Karyotype , Adult , Child , Child Development Disorders, Pervasive/physiopathology , Child, Preschool , Developmental Disabilities/physiopathology , Female , Gene Duplication , Genetic Diseases, X-Linked/physiopathology , Humans , In Situ Hybridization, Fluorescence , Male , Oligonucleotide Array Sequence Analysis , Pedigree , Reverse Transcriptase Polymerase Chain Reaction
3.
Clin Endocrinol (Oxf) ; 75(6): 791-800, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21627674

ABSTRACT

CONTEXT: The MEN1 syndrome is associated with parathyroid, pancreatic and pituitary tumours and is caused by mutations in the MEN1 gene. In general, there is no genotype-phenotype correlation. OBJECTIVES: To characterize a large family with MEN1 with aggressive tumour behaviour: malignant pancreatic endocrine tumours were present in five affected subjects and were the presenting features in three subjects. DESIGN: The coding region of MEN1 was sequenced. Gene copy number analysis was performed by multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (aCGH). Loss of heterozygosity (LOH) in tumour tissue was studied by microsatellite analysis. Insulin-like growth factor II (IGF-II) and CDKN1C/p57KIP2 expression were investigated by immunohistochemistry. RESULTS: Mutation screening by conventional PCR sequence analysis of patients' peripheral blood DNA did not reveal any mutation in the MEN1 or CDKN1B gene. Gene copy number analysis by MLPA and aCGH demonstrated a novel monoallelic deletion of 5 kb genomic DNA involving the MEN1 promoter and exons 1 and 2. LOH analysis indicated somatic deletion of maternal chromosome 11, including MEN1 locus (11q13) and 11p15 imprinting control regions (ICR). Methylation analysis of ICR demonstrated ICR1 hypermethylation and ICR2 hypomethylation in the tumour specimens. ICR1 and ICR2 control the expression of IGF-2 and CDKN1C/p57KIP2, respectively. Immunohistochemistry showed that expression of paternally expressed IGF-2 was up-regulated and the maternally expressed CDKN1C/p57KIP2 was lost in the pancreatic endocrine tumours. CONCLUSIONS: Gene copy number analysis by MLPA should be considered in patients with negative conventional mutation screening. Although large MEN1 deletion causes MEN1, disruption of imprinted CDKN1C/p57KIP2 and IGF-2 gene expression may contribute to tumour progression and aggressive phenotype.


Subject(s)
Multiple Endocrine Neoplasia Type 1/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins/genetics , Adenoma, Islet Cell/genetics , Adolescent , Adult , Child , Family , Female , Gene Deletion , Genetic Association Studies , Humans , Male , Middle Aged , Pedigree , Phenotype , Sequence Analysis, DNA , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...