Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Foods ; 13(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998502

ABSTRACT

The overuse of chemical fertilizers degrades the soil ecosystem and restricts the natural development of plants. Various byproducts are produced throughout the production and consumption of coffee within the coffee industry, and they are significant in terms of environmental waste. Spent coffee grounds (SCGs) contains various bioactive compounds that have demonstrated potential applications in various fields. These compounds can enhance soil quality by improving its physicochemical properties and biological fertility, ultimately leading to improved plant growth and reducing food waste and contamination at the same time. This current study examined the impact of chemical fertilizer, vermicompost, SCGs with percentage fertilizer (SCGPF), and SCGs on the top dressing fertilizer (SCGTDF) on red radish (Raphanus sativus) growth and soil quality. This greenhouse experiment tested various concentrations of SCGPF (5%, 10%, 25%, and 50%) and different doses of SCGTDF (0.5 g, 1 g, and 2.5 g). The results showed that the 0.5 g SCGTDF treatment yielded the highest mean plant length (18.47 cm) and fresh weight (27.54 g), while the vermicompost at a 50% concentration produced the highest mean leaf surface area (58.32 cm2). These findings suggest the potential of SCGs as a sustainable fertilizer alternative, contributing to improved plant growth and soil quality, thus supporting sustainable agricultural practices and a circular economy.

2.
Foods ; 13(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38890837

ABSTRACT

The pressing need for sustainable agricultural practices, especially with the increasing population, has directed attention towards alternative fertilizers that enhance crop yield while preserving soil integrity and reducing food loss. The current study investigated the comparative efficacy of food waste compost (FOWC), vermicompost, and chemical fertilizers on the growth of red radish. The present work used a systematic experimental design to evaluate plant growth parameters, including radish weight and height. The soil quality was determined by measuring the pH and electrical conductivity for all soil samples. The results indicated a significant variation in red radish fresh weight among different treatments. For example, the 25% vegetable and fruit waste compost (VFWC) treatment demonstrated a relatively high mean fresh weight, while the 50% mixed compost (MC) treatment yielded a much lower mean fresh weight. These numbers underscore the potential efficacy of specific food waste treatments in enhancing plant growth, with vermicompost at 50% and VFWC at 25% showing considerable promise in increasing crop yield. The current study concluded that FOWC and vermicompost significantly improved plant growth, advocating for their use as sustainable and environmentally friendly alternatives to chemical fertilizers. The current findings emphasized the importance of selecting appropriate fertilizer types and concentrations to optimize agricultural productivity and environmental sustainability, supporting the incorporation of food waste into agricultural systems as a beneficial resource.

3.
J Trace Elem Med Biol ; 83: 127401, 2024 May.
Article in English | MEDLINE | ID: mdl-38301314

ABSTRACT

BACKGROUND: While previous studies have provided insights into the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) on aquatic organisms, there is still a substantial amount of information lacking about the possible effects of their doped counterparts. The goal of the current work was to address this gap by examining Mytilus galloprovincialis reaction to exposure to doped and undoped nanoparticles. METHODS: Two concentrations (50 or 100 µg/L) of undoped ZnO and TiO2 NPs, as well as their gold (Au) doped counterparts, were applied on mussels for 14 days, and the effects on biomarkers activities in digestive glands and gills were assessed by spectrophotometry. RESULTS: The NPs were quasi-spherical in shape (below 100 nm), stable in seawater, and with no aggregation for both doped and undoped forms. Analytical results using inductively coupled plasma atomic emission spectroscopy indicated the uptake of NPs in mussels. Furthermore, it was found that biometal dyshomeostasis could occur following NP treatment and that doping the NPs aggravated this response. At the biochemical level, exposure to undoped NPs caused membrane damage, neurotoxic effect, and changes in the activities in the gills and digestive glands of superoxide dismutase, catalase, and glutathione-S-transferase, in a concentration and organ-dependent manner. CONCLUSION: Doping ZnO NPs and TiO2NPs with Au induced additional oxidative stress, membrane damage, and neurotoxicity in mussels.


Subject(s)
Metal Nanoparticles , Mytilus , Nanoparticles , Water Pollutants, Chemical , Zinc Oxide , Animals , Zinc Oxide/toxicity , Gold/toxicity , Nanoparticles/toxicity , Oxidative Stress , Titanium/toxicity , Metal Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity
4.
Plants (Basel) ; 12(21)2023 Oct 29.
Article in English | MEDLINE | ID: mdl-37960071

ABSTRACT

Salinity adversely affects the plant's morphological characteristics, but the utilization of aqueous algal extracts (AE) ameliorates this negative impact. In this study, the application of AE derived from Chlorella vulgaris and Dunaliella salina strains effectively reversed the decline in biomass allocation and water relations, both in normal and salt-stressed conditions. The simultaneous application of both extracts in salt-affected soil notably enhanced key parameters, such as chlorophyll content (15%), carotene content (1%), photosynthesis (25%), stomatal conductance (7%), and transpiration rate (23%), surpassing those observed in the application of both AE in salt-affected as compared to salinity stress control. Moreover, the AE treatments effectively mitigated lipid peroxidation and electrolyte leakage induced by salinity stress. The application of AE led to an increase in GB (6%) and the total concentration of free amino acids (47%) by comparing with salt-affected control. Additionally, salinity stress resulted in an elevation of antioxidant enzyme activities, including superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase. Notably, the AE treatments significantly boosted the activity of these antioxidant enzymes under salinity conditions. Furthermore, salinity reduced mineral contents, but the application of AE effectively counteracted this decline, leading to increased mineral levels. In conclusion, the application of aqueous algal extracts, specifically those obtained from Chlorella vulgaris and Dunaliella salina strains, demonstrated significant efficacy in alleviating salinity-induced stress in Phaseolus vulgaris plants.

5.
Cureus ; 15(10): e46746, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38022326

ABSTRACT

Background This study aims to evaluate the accuracy of volumetric measurements of three-dimensional (3D)-printed human condyles from cone-beam computed tomography (CBCT) in comparison to physical condyles using a water displacement test. Methodology A sample of 22 dry condyles was separated from the mandibular body by disc, mounted on a base made of casting wax, and scanned using the SCANORA (Scanora 3DX, Soredex, Finland) CBCT scanner. Subsequently, the projection data were reconstructed with the machine-dedicated OnDemand 3D (Cybermed Co., Seoul, Korea). The Standard Tessellation Language file was prepared for 3D printing using chitubox slicing software v1.9.1. Frozen water-washable gray resin was used for 3D printing. All condyles were printed using the same parameters and the same resin. The volumetric measurements were then performed using a customized modified pycnometer based on water volume and weight displacement. Volumetric measures were performed for both the physical human condyles and the 3D-printed replicas and the measurements were then compared. Results The volume of dry condyles using the water displacement method showed an average (±SD) of 1.925 ± 0.40 cm3. However, the volume of 3D-printed replicas using the water displacement method showed an average (±SD) of 2.109 ± 0.40 cm3. The differences in measurements were insignificant (p > 0.05), as revealed by an independent t-test. Conclusions Highly precise, accurate, and reliable CBCT for volumetric mandibular condyle was applied for measurements of a human condyle and 3D-printed replica. The modified pycnometer for volumetric measurements presented an excellent volumetric measure based on a simple water displacement device. The tested modified pycnometer can be applied in volumetric measurements in both 3D-printed and mandibular condyle. For best accuracy, the highest scanning resolution possible should be used. As it directly handles irregularly shaped solid objects in a non-destructive manner with a high level of precision and reliability, this 3D scanning approach may be seen as a superior alternative to the current measurement methods.

6.
ACS Omega ; 8(33): 30630-30639, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636931

ABSTRACT

Phytochemical study of the ethyl acetate root extract of Zygophyllum album has resulted in the isolation of a new saponin, Zygo-albuside D (1), along with two known compounds; (3-O-[ß-D-quinovopyranosyl]-quinovic acid) (2), which is first reported in the root, and catechin (3), first reported in the genus. Their chemical structures were established by NMR and high-resolution mass spectrometry (HRMS). The new saponin (1) exhibited promising cytotoxicity with IC50 values of 3.5 and 5.52 µM on A549 and PC-3 cancer cell lines, respectively, compared to doxorubicin with IC50 values of 9.44 and 11.39 µM on A549 and PC-3 cancer cell lines, respectively. While it had an IC50 value of 46.8 µM against WISH cells. Investigating apoptosis-induction, compound 1 induced total apoptotic cell death in A549 lung cancer cells by 32-fold; 21.53% compared to 0.67% in the untreated control cells. Finally, it upregulated the pro-apoptotic genes and downregulated the antiapoptotic gene using gene expression levels. Compound 1 exhibited remarkable CDK-2 target inhibition by 96.2% with an IC50 value of 117.6 nM compared to Roscovitine. The molecular docking study further confirmed the binding affinity of compound 1 as CDK2 and Bcl2 inhibitors that led to apoptosis induction in A549 cancer cells. Hence, this study highlights the importance of compound 1 in the design of a new anticancer agent with specific mechanisms.

7.
Heliyon ; 9(6): e17292, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37441372

ABSTRACT

Agriculture faces many challenges because of climate changes. The nutrients present in nano-sized form improve plant productivity, especially when used at the appropriate planting time. Field experiments were conducted as a factorial experiment for evaluating two planting dates (20th September and 20th October), foliar application with nanoparticles (NPs) including silica nanoparticles (SiO2-NPs) at 1.5 and 3 mM, calcium carbonate nanoparticles (CaCO3-NPs) at 5 and 10 mM and distilled water (control) on pre- and post-harvest characteristics of Dahlia pinnata var. pinnata Cav. The results indicate that the interactions during the late planting time (20th October) and exogenous applications of SiO2-NPs at 1.5 mM or CaCO3-NPs at 10 mM have improved plant growth including plant height, stem diameter, fresh and dry weights of plant, leaf area, inflorescence diameter, inflorescence stalk length, branches number, tuber numbers, inflorescences number on the plant, and the vase life. At the same time, insignificant differences appeared in the interaction during the planting dates and SiO2 or CaCO3 -NPs concentrations on inflorescence stalk diameter, total soluble solids, membrane stability index, maximum increase in fresh weight (FW), and Si and Ca contents. In addition, all exogenous applications of NPs at the late planting time promoted the plant growth characteristics like lignin %, cellulose %, inflorescence water content, change in FW, and total water uptake. Moreover, the controls through the two planting dates recorded the maximum change in water uptake and water loss values. In short, it can be recommended to use SiO2-NPs at 1.5 mM or CaCO3-NPs at 10 mM as a foliar application at the late planting time (20th October) for obtaining the optimum quantitative and qualitative parameters of D. pinnata.

8.
AMB Express ; 13(1): 47, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37184816

ABSTRACT

Insecticide resistance in agricultural pests has prompted the need to discover novel compounds with new modes of action. We investigated the potency of secondary metabolites from seventy endophytic actinobacteria against laboratory and field strains of Spodoptera littoralis (fourth instar), comparable to the bioinsecticide spinetoram (Radiant SC 12%). Endophytes from Artemisia herba-alba and A. judaica were highly effective. Chemical profiling of the most potent metabolite of the strain Streptomyces sp. ES2 was investigated using LC-QTOF-MS-MS technique, and the activity was validated through molecular docking studies. Metabolic extracts from actinobacteria belonging to Streptomyces, Nocardioides, and Pseudonocardia showed immediate and latent death to the Spodoptera littoralis fourth instar larvae. The metabolite from strain ES2 has shown the most promising and significant histopathological and inhibitory effects on the fourth instar larvae. ES2 metabolite caused lesions in the body wall cuticle, indicating a different mode of action than that of Radiant. Chemical profiling of ES2 showed the presence of cyromazine (molt inhibitor), 4-nitrophenol, and diazinon as key constituents. In conclusion, these findings suggest that secondary metabolites from endophytic actinobacteria inhabiting wild medicinal plants can be a sustainable source for promising natural biocontrol agents. This is the first illustration of the insecticidal activity of Artemisia spp. microbiome, and natural cyromazine synthesis by actinobacteria.

9.
Cureus ; 15(3): e36044, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37056524

ABSTRACT

Introduction Chlorophylls are natural pigments in our everyday diet, especially with customers' rising preference for more natural and healthful habits. The antioxidant capabilities of both classes of lipophilic substances have been researched since disrupting antioxidant equilibrium appears to be linked to the development of several diseases. Methods This research aimed to evaluate the effect of injection with chlorophyll (30 and 60 mg/ml) on enhancing the blood parameters of rats. Twenty-one white male rats were included in this study and divided into three groups: control, 30 mg/ml, and 60 mg/ml.  Results Treatment with liquid chlorophyll significantly increased white blood cells (WBCs), red blood cells (RBCs), granulocytes, lymphocytes, hemoglobin (Hgb), hematocrit (Hct), mean corpuscular Hgb concentration (MCHC), and platelets. However, it nonsignificantly increased mean corpuscular volume (MCV). These results confirm a great increase in important hematological parameters in response to exogenous injectable chlorophyll with concentrations of 30 and 60 mg/ml and at two different time points, 14 and 28 days after injection. The platelet count was significantly (p<0.001) increased after 30 mg/ml and 60 mg/ml. Conclusion These results show a significant increase in important hematological parameters in response to exogenous injectable chlorophyll. The liquid chlorophyll is recommended to increase blood parameters and improve blood characteristics avoiding anemia.

10.
Life (Basel) ; 12(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36143441

ABSTRACT

Alkaline soils have fertility issues due to poor physical qualities, which have a negative impact on crop growth and output. Solidago is used in flower arrangements, bouquet filler, and traditional medicine. The possible biological fertilizers' eco-friendly and cost-effective nature favours farmers because of the vital role in soil productivity and environmental sustainability. A field experiment was performed during two successive seasons to explore the effect of applying yeast extract (YE) at (0, 0.5, 1.0, and 1.5 g/L) and/or gibberellic acid (GA3) at (control, 100, 200, and 300 ppm) on the morpho-physiological parameters, macronutrients, and biochemical constituents of Solidago virgaurea. The results emphasize that YE (1.5 g/L) and/or GA3 (300 ppm) treatments show the highest significant increase in plant growth (i.e., plant height, no. of branches, fresh and dry weight of shoots); photosynthetic efficiency (i.e., chlorophyll (a), chlorophyll (b) and total carotenoids); macronutrient content (i.e., N, P, and K); and biochemical constituents (i.e., total soluble sugars, total phenolic, total flavonoids, and total glycosides). The study results recommend using YE and GA3 in combination at concentrations of 1.5 g/L and 300 ppm, respectively, to improve Solidago production sustainability under alkaline soil conditions.

11.
Antioxidants (Basel) ; 11(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35883740

ABSTRACT

This study presents a comparison between two mistletoe plants-P. acacia and P. curviflorus-regarding their total phenolic contents and antioxidant and anticancer activities. P. curviflorus exhibited a higher total phenolics content (340.62 ± 19.46 mg GAE/g extract), and demonstrated higher DPPH free radical scavenging activity (IC50 = 48.28 ± 3.41µg/mL), stronger reducing power (1.43 ± 0.54 mMol Fe+2/g) for ferric ions, and a greater total antioxidant capacity (41.89 ± 3.15 mg GAE/g) compared to P. acacia. The cytotoxic effects of P. acacia and P. curviflorus methanol extracts were examined on lung (A549), prostate (PC-3), ovarian (A2780) and breast (MDA-MB-231) cancer cells. The highest anticancer potential for the two extracts was observed on PC-3 prostate cancer cells, where P. curviflorus exhibited more pronounced antiproliferative activity (IC50 = 25.83 µg/mL) than P. acacia (IC50 = 34.12 µg/mL). In addition, both of the tested extracts arrested the cell cycle at the Pre-G1 and G1 phases, and induced apoptosis. However, P. curviflorus extract possessed the highest apoptotic effect, mediated by the upregulation of p53, Bax, and caspase-3, 8 and 9, and the downregulation of Bcl-2 expression. In the pursuit to link the chemical diversity of P. curviflorus with the exhibited bioactivities, its metabolomic profiling was achieved by the LC-ESI-TOF-MS/MS technique. This permitted the tentative identification of several phenolics-chiefly flavonoid derivatives, beside some triterpenes and sterols-in the P. curviflorus extract. Furthermore, all of the metabolites in P. curviflorus and P. acacia were inspected for their binding modes towards both CDK-2 and EGFR proteins using molecular docking studies in an attempt to understand the superiority of P. curviflorus over P. acacia regarding their antiproliferative effect on PC-3 cancer cells. Docking studies supported our experimental results; with all of this taken together, P. curviflorus could be regarded as a potential prospect for the development of chemotherapeutics for prostate cancer.

12.
Environ Sci Pollut Res Int ; 29(35): 52378-52398, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35258726

ABSTRACT

Increasing ultraviolet (UV) radiation is causing oxidative stress that accounts for growth and yield losses in the present era of climate change. Plant hormones are useful tools for minimizing UV-induced oxidative stress in plants, but their putative roles in protecting tomato development under UVC remain unknown. Therefore, we investigated the underlying mechanism of pre-and post-kinetin (Kn) treatments on tomato plants under UVC stress. The best dose of Kn was screened in the preliminary experiments, and this dose was tested in further experiments. UVC significantly decreases growth traits, photosynthetic pigments, protein content, and primary metabolites (proteins, carbohydrates, amino acids) but increases oxidative stress biomarkers (lipid peroxidation, lipoxygenase activity, superoxide anion, hydroxyl radical, and hydrogen peroxide) and proline content. Treatment of pre-and post-kinetin spraying to tomato plants decreases UVC-induced oxidative stress by restoring the primary and secondary metabolites' (phenolic compounds, flavonoids, and anthocyanins) status and upregulating the antioxidant defense systems (non-enzymatic antioxidants as ascorbate, reduced glutathione, α-tocopherol as well as enzymatic antioxidants as superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase, glutathione-S-transferase, and phenylalanine ammonia-lyase). Thus, the application of Kn in optimum doses and through different modes can be used to alleviate UVC-induced negative impacts in tomato plants.


Subject(s)
Solanum lycopersicum , Anthocyanins/pharmacology , Antioxidants/metabolism , Catalase/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Hydrogen Peroxide/metabolism , Kinetin/pharmacology , Oxidative Stress , Superoxide Dismutase/metabolism
13.
Plants (Basel) ; 9(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244604

ABSTRACT

Chilling, a sort of cold stress, is a typical abiotic ecological stress that impacts the development as well as the growth of crops. The present study was carried to investigate the role of ascorbic acid root priming in enhancing tolerance of tomato seedlings against acute chilling stress. The treatments included untreated control, ascorbic acid-treated plants (AsA; 0.5 mM), acute chilling-stressed plants (4 °C), and chilling stressed seedlings treated by ascorbic acid. Exposure to acute chilling stress reduced growth in terms of length, fresh and dry biomass, pigment synthesis, and photosynthesis. AsA was effective in mitigating the injurious effects of chilling stress to significant levels when supplied at 0.5 mM concentrations. AsA priming reduced the chilling mediated oxidative damage by lowering the electrolyte leakage, lipid peroxidation, and hydrogen peroxide. Moreover, up regulating the activity of enzymatic components of the antioxidant system. Further, 0.5 mM AsA proved beneficial in enhancing ions uptake in normal and chilling stressed seedlings. At the gene expression level, AsA significantly lowered the expression level of CAT and heat shock protein genes. Therefore, we theorize that the implementation of exogenous AsA treatment reduced the negative effects of severe chilling stress on tomato.

14.
Bot Stud ; 59(1): 6, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29450670

ABSTRACT

BACKGROUND: High and low temperatures constitute the most damaging type of abiotic stress and limit the survival, and productivity of plants. The present study aimed to evaluate the role of exogenous applications of acetylsalicylic acid (ASA) in reducing the deleterious effects of cold stress. Phaseolus vulgaris L. seedlings were treated with foliar-sprayed ASA at concentrations of 0-3 mM and then subjected to chilling stress at 4 °C for 2 or 4 days. RESULTS: Growth, photosynthesis, biochemical alterations, oxidative damage and antioxidant enzyme activities as well as the expression of cold-responsive genes (CBF3-COR47), were monitored during the experiment. ASA applications substantially improved several growth and photosynthetic parameters, including shoot biomass, dry weight, and photosynthetic pigments, of P. vulgaris seedlings exposed to different durations of chilling stresses. The ASA foliar spray treatments significantly (p < 0.05) rescued the growth and photosynthetic pigments of P. vulgaris seedlings under different chilling stresses. The total soluble sugars markedly increased during 0-4 days of chilling stress following ASA foliar spraying. The exogenous application of ASA significantly (p < 0.05) increased the accumulation of proline in P. vulgaris seedlings under chilling stress. At the gene expression level, ASA significantly (p < 0.05) upregulated the cold-responsive genes CBF3 and COR47. CONCLUSIONS: As a result, we speculate that, the application of exogenous ASA alleviated the adverse effects of chilling stress on all measured parameters, and 1 and 2 mM ASA exhibited the greatest effects.

15.
PLoS One ; 12(11): e0188220, 2017.
Article in English | MEDLINE | ID: mdl-29145471

ABSTRACT

Mycoremediation is an on-site remediation strategy, which employs fungi to degrade or sequester contaminants from the environment. The present work focused on the bioremediation of soils contaminated with zinc by the use of a native mycorrhizal fungi (AM) called Funneliformis geosporum (Nicol. & Gerd.) Walker & Schüßler. Experiments were performed using Triticum aestivum L. cv. Gemmeza-10 at different concentrations of Zn (50, 100, 200 mg kg-1) and inoculated with or without F. geosporum. The results showed that the dry weight of mycorrhizal wheat increased at Zn stressed plants as compared to the non-Zn-stressed control plants. The concentrations of Zn also had an inhibitory effect on the yield of dry root and shoot of non-mycorrhizal wheat. The photosynthetic pigment fractions were significantly affected by Zn treatments and mycorrhizal inoculation, where in all treatments, the content of the photosynthetic pigment fractions decreased as the Zn concentration increased in the soil. However, the level of minerals of shoots, roots, and grains was greatly influenced by Zn-treatment and by inoculation with F. geosporum. Treatment with Zn in the soil increased Cu and Zn concentrations in the root, shoot and grains, however, other minerals (P, S, K, Ca and Fe) concentration was decreased. Inoculation of wheat with AM fungi significantly reduced the accumulation of Zn and depressed its translocation in shoots and grains of wheat. In conclusion, inoculation with a native F. geosporum-improves yields of wheat under higher levels of Zn and is possible to be applied for the improvement of zinc contaminated soil.


Subject(s)
Biodegradation, Environmental , Mycorrhizae/metabolism , Plant Shoots/metabolism , Triticum/metabolism , Zinc/metabolism , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...