Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770508

ABSTRACT

Nanomaterials have attracted attention for application in photocatalytic hydrogen production because of their beneficial properties such as high specific surface area, attractive morphology, and high light absorption. Furthermore, hydrogen is a clean and green source of energy that may help to resolve the existing energy crisis and increasing environmental pollution caused by the consumption of fossil fuels. Among various hydrogen production methods, photocatalytic water splitting is most significant because it utilizes solar light, a freely available energy source throughout the world, activated via semiconductor nanomaterial catalysts. Various types of photocatalysts are developed for this purpose, including carbon-based and transition-metal-based photocatalysts, and each has its advantages and disadvantages. The present review highlights the basic principle of water splitting and various techniques such as the thermochemical process, electrocatalytic process, and direct solar water splitting to enhance hydrogen production. Moreover, modification strategies such as band gap engineering, semiconductor alloys, and multiphoton photocatalysts have been reviewed. Furthermore, the Z- and S-schemes of heterojunction photocatalysts for water splitting were also reviewed. Ultimately, the strategies for developing efficient, practical, highly efficient, and novel visible-light-harvesting photocatalysts will be discussed, in addition to the challenges that are involved. This review can provide researchers with a reference for the current state of affairs, and may motivate them to develop new materials for hydrogen generation.

2.
Polymers (Basel) ; 14(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35406164

ABSTRACT

Photocatalysts lead vitally to water purifications and decarbonise environment each by wastewater treatment and hydrogen (H2) production as a renewable energy source from water-photolysis. This work deals with the photocatalytic degradation of ciprofloxacin (CIP) and H2 production by novel silver-nanoparticle (AgNPs) based ternary-nanocomposites of thiolated reduce-graphene oxide graphitic carbon nitride (AgNPs-S-rGO2%@g-C3N4) material. Herein, the optimised balanced ratio of thiolated reduce-graphene oxide in prepared ternary-nanocomposites played matchlessly to enhance activity by increasing the charge carriers' movements via slowing down charge-recombination ratios. Reduced graphene oxide (rGO), >2 wt.% or <2 wt.%, rendered H2 production by light-shielding effect. As a result, CIP degradation was enhanced to 95.90% by AgNPs-S-rGO2%@g-C3N4 under the optimised pH(6) and catalyst dosage(25 mg/L) irradiating beneath visible-light (450 nm, 150 watts) for 70 min. The chemical and morphological analysis of AgNPs-S-rGO2%@g-C3N4 surface also supported the possible role of thiolation for this enhancement, assisted by surface plasmon resonance of AgNPs having size < 10 nm. Therefore, AgNPs-S-rGO2%@g-C3N4 has 3772.5 µmolg−1 h−1 H2 production, which is 6.43-fold higher than g-C3N4 having cyclic stability of 96% even after four consecutive cycles. The proposed mechanism for AgNPs-S-rGO2%@g-C3N4 revealed that the photo-excited electrons in the conduction-band of g-C3N4 react with the adhered water moieties to generate H2.

3.
Biomed Res Int ; 2015: 529808, 2015.
Article in English | MEDLINE | ID: mdl-25874218

ABSTRACT

This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.


Subject(s)
Biofuels , Carbon Monoxide/analysis , Gasoline , Nitrogen Oxides/analysis , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...