Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Pharm ; 81(3): 733-47, 2013.
Article in English | MEDLINE | ID: mdl-24106670

ABSTRACT

A simple, specific, accurate, and stability-indicating method was developed and validated for the quantitative determination of menadione sodium bisulfite in the injectable solution formulation. The method is based on zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) coupled with a photodiode array detector. The desired separation was achieved on the ZIC-HILIC column (250 mm × 4.6 mm, 5 µm) at 25°C temperature. The optimized mobile phase consisted of an isocratic solvent mixture of 200mM ammonium acetate (NH4AC) solution and acetonitrile (ACN) (20:80; v/v) pH-adjusted to 5.7 by glacial acetic acid. The mobile phase was fixed at 0.5 ml/min and the analytes were monitored at 261 nm using a photodiode array detector. The effects of the chromatographic conditions on the peak retention, peak USP tailing factor, and column efficiency were systematically optimized. Forced degradation experiments were carried out by exposing menadione sodium bisulfite standard and the injectable solution formulation to thermal, photolytic, oxidative, and acid-base hydrolytic stress conditions. The degradation products were well-resolved from the main peak and the excipients, thus proving that the method is a reliable, stability-indicating tool. The method was validated as per ICH and USP guidelines (USP34/NF29) and found to be adequate for the routine quantitative estimation of menadione sodium bisulfite in commercially available menadione sodium bisulfite injectable solution dosage forms.

2.
Sci Pharm ; 81(2): 459-74, 2013.
Article in English | MEDLINE | ID: mdl-23833713

ABSTRACT

A simple, specific, accurate, and stability-indicating RP-HPLC method was developed and validated for the simultaneous determination of Trimethoprim (TMP) and Sulfadimethoxine sodium (SDMS) in Vetricine(®) oral solution product. The desired separation was achieved on an ODS column (250×4.6 mm i.d., 5 µm) at room temperature. The optimized mobile phase consisted of an isocratic solvent mixture of water:acetonitrile:triethylamine (700:299:1, v/v/v), adjusted to a pH of 5.7 ± 0.05 with 0.2N acetic acid. The mobile phase was fixed at 0.8 ml/min and the analytes were monitored at 254 nm using a photodiode array detector. The effects of the chromatographic conditions on the peaks USP tailing factor, column efficiency, and resolution were systematically optimized. Forced degradation experiments were carried out by exposing TMP, SDMS standards, and the oral solution formulation to thermal, photolytic, oxidative, and acid-base hydrolytic stress conditions. The degradation products were well-resolved from the main peaks and the excipients, thus proving the reliable stability-indicating method. The method was validated as per ICH and USP guidelines (USP34/NF29) and found to be adequate for the routine quantitative estimation of TMP and SDMS in commercially available Vetricine® oral liquid dosage form.

3.
Sci Pharm ; 81(1): 167-82, 2013.
Article in English | MEDLINE | ID: mdl-23641336

ABSTRACT

A direct, precise, and stability-indicating HPLC method that is based on reversed-phase liquid chromatography (RP-HPLC) coupled with a photodiode array detector (PDA) was developed, optimized, and validated for the simultaneous determination of sulfadiazine sodium (SDZS) and Trimethoprim (TMP) in Bactizine® forte injectable solution. The separation was achieved using a C18 column (250 mm×4.6 mm i.d., 5 µm particle size) at room temperature, and an isocratic mobile phase that consisted of a trinary solvent mixture of water-acetonitrile-triethylamine (838:160:2, v/v) at pH 5.5 ± 0.05. The mobile phase was delivered at 1.4 ml/min and the analytes were monitored at 254 nm. The effects of the operational chromatographic conditions on the peak's USP tailing factor, column efficiency, and resolution were systematically optimized. Forced degradation experiments were carried out by exposing SDZS, TMP standards, and their formulation to thermal, photolytic, oxidative, and acid-base hydrolytic stress conditions. The method was successfully validated in accordance to International Conference on Harmonization (ICH) and United States Pharmacopoeia (USP34/NF29) guidelines and found to be suitable for the quantitative determination and stability of SDZS and TMP in Bactizine® forte injectable solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...