Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(6): e0179799, 2017.
Article in English | MEDLINE | ID: mdl-28604826

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0176092.].

2.
PLoS One ; 12(4): e0176092, 2017.
Article in English | MEDLINE | ID: mdl-28441442

ABSTRACT

Evidence from recent studies showed that acute aerobic exercise results in improvements in different cognitive functions. The goal of this study was to assess the influence of acute bouts of aerobic versus resistance exercise on attention and executive function in adults. Thirty-nine physically active adults (age = 52±8 yr) served as participants. Each participant visited the laboratory four times: on the first visit participants performed a cognitive test (NeuroTrax) followed by an aerobic fitness assessment, as well as maximal strength test composed of six exercises. During visits 2-4, participants completed the cognitive test before and after the experimental condition, which consisted of either 25 min of aerobic exercise or resistance exercise, or watching a recorded interview show in a seated position (control condition). Findings indicated significantly higher changes in scores of attention after acute aerobic exercise (mean change 3.46, 95% CI -0.32, 7.27) than following the control condition (mean change -0.64, 95% CI -2.23, 0.96). The changes following resistance exercise (mean change -0.67, 95% CI -4.47, 3.13) were not significantly different from the changes following the control condition. Executive function scores showed a marginally significant improvement following acute aerobic (mean change 4.06, 95% CI 1.68, 6.44) and resistance exercise (mean change 3.69, 95% CI 0.78, 6.60), but not after control (mean change 0.91, 95% CI -1.21, 3.02). We suggest that adults should consider augmenting both modalities into their training routines, which may improve their cognition in addition to providing other physical benefits.


Subject(s)
Attention/physiology , Cognition/physiology , Executive Function/physiology , Exercise/psychology , Adult , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Physical Fitness/physiology , Physical Fitness/psychology , Resistance Training
3.
Brain Cogn ; 109: 59-65, 2016 11.
Article in English | MEDLINE | ID: mdl-27643952

ABSTRACT

Acute exercise appears to facilitate certain aspects of cognitive processing. The possibility that exercise may lead to more efficient inhibitory processes is of particular interest, owing to the wide range of cognitive and motor functions that inhibition may underlie. The purpose of the present study was to examine the immediate and the delayed effect of acute aerobic exercise on response inhibition, motor planning, and eye-hand coordination in healthy active adults. Forty healthy and active participants (10 females) with a mean age of 51.88±8.46years performed the Go-NoGo test (response inhibition) and the Catch Game (motor planning and eye-hand coordination) before, immediately after, and following a 30-min recovery period in two conditions: a moderate-intensity aerobic session and a control session. In 2-way repeated measures ANOVAs (2 treatments×3 times) followed by contrast comparisons for post hoc analyses, significant pre-post interactions - indicating improvements immediately following exercise but not following the control condition - were observed in the Go-NoGo measures: Accuracy, Reaction Time, and Performance Index, but not in the Catch Game. In the post-follow-up interaction a deterioration was observed in Performance Index, and a trend of deterioration in Accuracy and Reaction Time. The conclusion was that a single session of moderate-intensity aerobic exercise facilitates response inhibition, but not motor planning or eye-hand coordination, in middle-aged healthy active adults. On the other hand, the improvement does not last 30min following a recovery period. Further studies are needed to examine the duration of the inhibitory control benefits and the accumulative effect of a series of acute exercise bouts, as well as to determine the brain networks and/or neurotransmitter systems most affected by the intervention.


Subject(s)
Executive Function/physiology , Exercise/physiology , Inhibition, Psychological , Psychomotor Performance/physiology , Adult , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...