Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 97(2): 1067-71, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24342694

ABSTRACT

A single-flow continuous culture fermenter system was used to study the effect of blackberry and pomegranate oils on vaccenic acid (trans-11 C18:1; VA) formation. Four continuous culture fermenters were used in a 4 × 4 Latin square design with 4 periods of 10d each. Diets were (1) control (CON), (2) control plus soybean oil (SBO), (3) control plus blackberry oil (BBO), and (4) control plus pomegranate oil (PMO). Oil supplements were added at 30 g/kg of diet dry matter. Effluents were collected from each fermenter during the last 3d of each period and analyzed for nutrient and fatty acid composition. The concentration of VA in effluents increased with oil supplements and was greatest with the BBO diet. The concentration of stearic acid (C18:0) increased with the addition of soybean oil but decreased with the addition of pomegranate oil compared with the CON diet. The concentration of cis-9,trans-11 conjugated linoleic acid increased with oil supplements and was greatest with the PMO diet. In conclusion, all 3 oil sources were effective in increasing the production of VA. The effect of PMO and BBO on VA may have resulted in part from inhibition of the final step in the biohydrogenation of VA to stearic acid.


Subject(s)
Lythraceae/chemistry , Oleic Acids/metabolism , Plant Oils/pharmacology , Rubus/chemistry , Animals , Bioreactors , Fatty Acids/metabolism , Fermentation , Linoleic Acids, Conjugated/metabolism , Soybean Oil/pharmacology
2.
J Anim Physiol Anim Nutr (Berl) ; 98(2): 271-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23581938

ABSTRACT

Previous studies have shown that adding fish oil (FO) to ruminant animal diets increased vaccenic acid (VA; t11 C18:1) accumulation in the rumen. Therefore, the objective of this study was to evaluate the effect of dietary FO amounts on selected strains of rumen bacteria involved in biohydrogenation. A single-flow continuous culture system consisting of four fermenters was used in a 4 × 4 Latin square design with four 9 days consecutive periods. Treatment diets were as follows: (i) control diet (53:47 forage to concentrate; CON), (ii) control plus FO at 0.5% (DM basis; FOL), (iii) control plus FO at 2% (DM basis; FOM) and (iv) control plus FO at 3.5% (DM basis; FOH). Fermenters were fed treatment diets three times daily at 120 g/day. Samples were collected from each fermenter on day 9 of each period at 1.5, 3 and 6 h post-morning feeding and then composited into one sample per fermenter. Increasing dietary FO amounts resulted in a linear decrease in acetate and isobutyrate concentrations and a linear decrease in acetate-to-propionate ratio. Propionate, butyrate, valerate and isovalerate concentrations were not affected by FO supplementation. Concentrations of C18:0 in fermenters linearly decreased, while concentrations of t10 C18:1 and VA linearly increased as dietary FO amounts increased. The concentrations of c9t11 and t10c12 conjugated linoleic acid were not affected by FO supplementation. The DNA abundance for Butyrivibrio fibrisolvens, Butyrivibrio vaccenic acid subgroup, Butyrivibrio stearic acid subgroup and Butyrivibrio proteoclasticus linearly decreased as dietary FO amounts increased. In conclusion, FO effects on trans fatty acid accumulation in the rumen may be explained in part by FO influence on Butyrivibrio group.


Subject(s)
Butyrivibrio/drug effects , Butyrivibrio/metabolism , Fish Oils/chemistry , Trans Fatty Acids/chemistry , Trans Fatty Acids/pharmacology , Animals , Culture Media/chemistry , Fermentation , Models, Biological , Ruminants , Trans Fatty Acids/administration & dosage
3.
Asian-Australas J Anim Sci ; 25(2): 234-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-25049556

ABSTRACT

The objective of this study was to evaluate the effects of forage level and oil supplement on selected strains of rumen bacteria believed to be involved in biohydrogenation (BH). A continuous culture system consisting of four fermenters was used in a 4×4 Latin square design with a factorial arrangement of treatments, with four 10 d consecutive periods. Treatment diets were: i) high forage diet (70:30 forage to concentrate (dry matter basis); HFC), ii) high forage plus oil supplement (HFO), iii) low forage diet (30:70 forage to concentrate; LFC), and iv) low forage plus oil supplement (LFO). The oil supplement was a blend of fish oil and soybean oil added at 1 and 2 g/100 g dry matter, respectively. Treatment diets were fed for 10 days and samples were collected from each fermenter on the last day of each period 3 h post morning feeding. The concentrations of vaccenic acid (t11C18:1; VA) and c9t11 conjugated linoleic acid (CLA) were greater with the high forage diet while the concentrations of t10 C18:1 and t10c12 CLA were greater with the low forage diet and addition of oil supplement increased their concentrations at both forage levels. The DNA abundance of Anaerovibrio lipolytica, and Butyrivibrio fibrisolvens vaccenic acid subgroup (Butyrivibrio VA) were lower with the low forage diets but not affected by oil supplement. The DNA abundance of Butyrivibrio fibrisolvens stearic acid producer subgroup (Butyrivibrio SA) was not affected by forage level or oil supplement. In conclusion, oil supplement had no effects on the tested rumen bacteria and forage level affected Anaerovibrio lipolytica and Butyrivibrio VA.

4.
J Anim Physiol Anim Nutr (Berl) ; 95(3): 313-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20880288

ABSTRACT

The effects of substituting corn with glycerol on DNA concentration of selected ruminal bacteria were investigated using continuous fermenters. Four continuous culture fermenters were used in a 4 × 4 Latin Square design with four 10 days consecutive periods. Treatment diets (60:40 forage to concentrate) were fed at 45 g/day dry matter (DM) in three equal portions. Glycerol (0.995 g/g glycerol) was used to replace corn in a grain mix at proportions of 0% (T0; control), 15% (T15), 30% (T30) and 45% (T45). On day 10 of each period, samples were collected from each fermenter 3 h after the morning feeding and analysed for volatile fatty acid and bacterial DNA concentration. Glycerol substitution was related to significantly higher butyrate, valerate and isovalerate concentrations. Compared with the T0 diet, acetate concentration was significantly lower with the T30 and T45 diets whilst propionate concentration was higher only with the T45 diet. The DNA concentrations for Butyrivibrio fibrisolvens and Selenomonas ruminantium decreased with the T30 and T45 diets compared with the T0 diet. No differences in the DNA concentrations for Ruminococcus albus and Succinivibrio dextrinosolvens amongst diets were observed. The findings show that substituting 15% of the dietary corn with glycerol had no substantive effects on fermentation processing or ruminal bacteria. Higher substitution levels, however, may adversely affect ruminal bacteria and negatively impact acetate production.


Subject(s)
Bacteria/drug effects , Bacteria/metabolism , Bioreactors , Glycerol/metabolism , Glycerol/pharmacology , Zea mays/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Fermentation/physiology , Gene Expression Regulation, Bacterial/drug effects
5.
J Dairy Sci ; 92(12): 6156-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19923618

ABSTRACT

The effects of substituting fish oil (FO) with docosahexaenoic acid (DHA)-micro algae on milk chemical and fatty acid composition were examined in this study. Twenty-four Holstein cows in mid lactation grazing on an alfalfa-grass based pasture were divided into 4 treatment groups (6 cows/treatment) and supplemented with 7 kg/d grain mix plus 350 g of soybean oil and one of the following: 1) 150 g of FO, 2) 100 g of FO plus 50 g of algae, 3) 50 g of FO plus 100 g of algae, or 4) 150 g of algae. Cows were fed treatment diets for 3 wk, and milk samples were collected from each cow during the last 3 d of the study. Milk production (17.96, 17.56, 17.55, and 19.26 kg/d for treatment diets 1 to 4, respectively), milk fat percentages (3.17, 3.49, 3.74, and 3.43%), and milk protein percentages (3.35, 3.50, 3.71, and 3.42%) were similar between treatment diets. Concentrations (g/100 g of fatty acids) of milk cis-9 trans-11 (c9t11) conjugated linoleic acid (CLA; 3.41, 3.69, 4.47, and 4.21 for treatment diets 1 to 4, respectively) and vaccenic acid (11.80, 12.83, 13.87, and 13.53) were similar between treatment diets. Results of this study suggest that DHA-micro algae can partially or fully substitute FO in a cow's diet without any adverse effects on milk production, milk composition, or milk c9t11 CLA content. The DHA-micro algae may be used as a viable alternative for FO in cow's diet to modify rumen biohydrogenation to increase milk c9t11 CLA content.


Subject(s)
Cattle/physiology , Diet/veterinary , Dietary Fats/administration & dosage , Docosahexaenoic Acids/administration & dosage , Eukaryota , Fatty Acids/chemistry , Fish Oils , Lactation/physiology , Milk/chemistry , Animals , Body Constitution/physiology , Body Weight/physiology , Dairying , Fatty Acids/analysis , Female , Milk/metabolism
6.
Biol Trace Elem Res ; 130(1): 13-9, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19148584

ABSTRACT

This experiment was conducted to investigate the effect of the inclusion of saltbush (Atriplex sp.) on the productive performance and blood mineral profile of fattening lambs. Eighteen Awassi lambs, 70 +/- 3 days of age and 23 +/- 1.8 kg body weights, were randomly selected and divided into three equal groups. Lambs in group one (control) were offered 0.2 kg/day shredded straw of barley (tibin) as the sole source of roughage, while lambs in treatment groups 2 and 3 were provided either 0.2 kg/day Atriplex nummularia or Atriplex halimus as their sole roughage content for 10 weeks. All lambs were also provided 1.1 kg/day of concentrate ration. Although lambs fed A. halimus had significantly (P < 0.05) lower dry matter intake than the control group, the daily weight gain of the two groups of lambs were not significantly different (P > 0.05). Lambs fed either A. nummularia or A. halimus had significantly lower (P < 0.05) calcium and copper levels but significantly higher (P < 0.05) cobalt levels in their blood serum than the control group. Zinc blood serum level was not affected (P > 0.05) by the treatment diets. These results suggested that A. nummularia and A. halimus can substitute for barley straw in the ration of fattening Awassi lambs without compromising lambs weight gain; however, special attention should be given to the mineral status in lambs if saltbush is a major feed component for prolonged periods of time.


Subject(s)
Animal Feed , Atriplex , Minerals/metabolism , Weight Gain , Animals , Body Weight , Sheep, Domestic
7.
J Anim Sci ; 86(5): 1114-23, 2008 May.
Article in English | MEDLINE | ID: mdl-18192545

ABSTRACT

Fatty acids of the n-3 type confer health benefits to humans and other species. Their importance to equine physiology could include improved exercise tolerance, decreased inflammation, and improved reproductive function. The circulating fatty acid profile and the acquisition and washout of fatty acids in response to n-3 supplementation were determined for horses in the current study. A fatty acid supplement high in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid was fed to deliver EPA plus DHA at 0 (control), 10, 20, or 40 g/d to 16 mares (n = 4/group) for 28 d. Plasma was collected at -11, 3, 7, 10, 16, 23, 30, 37, 44, 70, and 87 d relative to the beginning of supplementation. Plasma was analyzed for the presence of 35 fatty acids by gas chromatography. Plasma EPA and DHA increased (P < 0.05) in a dose-responsive manner by 3 d of feeding and reached peak concentrations by 7 d. Peak EPA and DHA concentrations of the 40 g/d supplement group were approximately 13x and 10x those of controls, respectively. Plasma EPA and DHA demonstrated a steep decline (P < 0.05) from peak values by 9 d after cessation of supplementation and were near presupplementation values by 42 d. Omega-3 supplementation also increased (P < 0.05) concentrations of fatty acids C14:0, C17:1n-7, C18:1trans-11, C18:3n-6, C18:4n-3, C20:3n-6, C20:4n-6, and C22:5n-3 and decreased (P < 0.05) concentrations of C18:1cis-9 fatty acid. Seasonal effects, apparently unrelated to supplementation and likely due to the availability of fresh forage, were also noted. Unlike ruminants, there were no detectable concentrations of CLA in equine plasma. These results indicate that the circulating fatty acid milieu in horses can be influenced through targeted supplementation. Possible implications of increased n-3 plasma and tissue concentrations on specific physiological function in the equine remain to be elucidated.


Subject(s)
Animal Nutritional Physiological Phenomena , Fatty Acids, Omega-3/administration & dosage , Fatty Acids, Omega-3/blood , Horses/blood , Animal Feed , Animals , Area Under Curve , Chromatography, Gas/methods , Chromatography, Gas/veterinary , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Docosahexaenoic Acids/blood , Docosahexaenoic Acids/metabolism , Dose-Response Relationship, Drug , Eicosapentaenoic Acid/administration & dosage , Eicosapentaenoic Acid/blood , Eicosapentaenoic Acid/metabolism , Fatty Acids, Omega-3/metabolism , Female , Horses/metabolism , Horses/physiology , Random Allocation , Time Factors
8.
J Dairy Sci ; 91(2): 722-30, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18218760

ABSTRACT

The effects of varying amounts of linseed oil (LSO) in grazing dairy cows' diet on milk conjugated linoleic acid (cis-9, trans-11 CLA) were investigated in this study. Twelve Holstein cows in midlactation (150 +/- 19 DIM) were placed on alfalfa-based pasture and assigned to 4 treatments using a 4 x 4 Latin square design with 3-wk periods. Treatments were: 1) control grain supplement; 2) control grain supplement containing 170 g of LSO (LSO1); 3) control grain supplement containing 340 g of LSO (LSO2); and 4) control grain supplement containing 510 g of LSO (LSO3). Grain supplements were offered at 7 kg/d. Additional 100 g/d of algae, divided evenly between the 2 feeding times, were added to every treatment diet. Milk samples were collected during the last 3 d of each period and analyzed for chemical and fatty acid composition. Treatments had no effect on milk production (18.9, 18.5, 19.6, and 19.1 kg/d for treatments 1 to 4, respectively). Linseed oil supplementation caused a quadratic increase in milk fat (3.23, 3.44, 3.35, and 3.27% for treatments 1 to 4, respectively) and protein (3.03, 3.19, 3.12, and 3.08%) contents. Concentrations (g/100 g of fatty acids) of milk cis-9, trans-11 CLA (1.12, 1.18, 1.39, and 1.65 for treatments 1 to 4, respectively) and VA (3.39, 3.62, 4.25, and 4.89) linearly increased with LSO supplementations. Results from this trial suggest that the increase in milk cis-9, trans-11 CLA was proportional to the amounts of LSO fed. In conclusion, adding LSO to grazing dairy cow diets can improve the nutritional value of milk without compromising milk composition or cow performance.


Subject(s)
Cattle/metabolism , Linoleic Acids, Conjugated/metabolism , Linseed Oil/administration & dosage , Milk/metabolism , Animals , Body Weight/drug effects , Body Weight/physiology , Dietary Supplements , Eating/drug effects , Eating/physiology , Female , Least-Squares Analysis , Medicago , Medicago sativa , Milk Proteins/metabolism , Nutritive Value , Random Allocation
9.
J Dairy Sci ; 90(10): 4763-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17881699

ABSTRACT

Earlier research showed that conjugated linoleic acid (CLA) content in milk fat is highest when cows' diets are supplemented with a blend of fish oil (FO) and linoleic acid-rich oils. The objective of this study was to compare the effect of FO and sunflower oil (SFO) supplementation on milk cis-9, trans-11 CLA when dairy cows managed on pasture or in confinement. Fourteen Holstein cows were assigned into 2 treatment groups: cows grazed on alfalfa-grass pasture (PAS) or were fed corn silage-alfalfa hay mix ad libitum (LOT). Both groups were supplemented with a 8.2 kg/d grain supplement containing 640 g of FO and SFO (1:3 wt/ wt). Grain supplement was fed in 2 equal portions after each milking, for a period of 3 wk. Milk samples were collected during the last 3 d of the experimental period. Milk yield was greater with the LOT diet (23.1 kg/ d) compared with the PAS diet (19.4 kg/d). Milk fat percentages (2.51 and 2.95 for the LOT and PAS, respectively) and yields (0.57 and 0.51 kg/d) were similar for the 2 diets. Milk protein percentages were not affected by diets (3.34 and 3.35 for the LOT and PAS diets, respectively), but protein yields were lower for the PAS diet (0.61 kg/d) compared with the LOT diet (0.75 kg/ d). Treatment diets had no effect on milk trans C18:1 concentrations [10.64 and 9.82 g/100 g of total fatty acids (FA) for the LOT and PAS, respectively] or yields (60.65 and 64.01 g/d), but did affect isomers distributions. Concentration (g/100 g of total FA) of vaccenic acid was lower with the LOT diet (2.15) compared with the PAS diet (4.52), whereas concentration of trans-10 C18:1 was greater with the LOT diet (4.99) compared with the PAS diet (1.69). Milk cis-9, trans-11 CLA concentration was greater with the PAS diet (1.52) compared with the LOT diet (0.84). In conclusion, the increase in milk cis-9, trans-11 CLA content was greater when pasture-based diets were supplemented with FO and SFO. The lower cis-9, trans-11 CLA concentration in milk from the confinement-fed cows resulted from trans-10 C18:1 replacing vaccenic acid as the predominant trans C18:1 isomer.


Subject(s)
Cattle/metabolism , Dietary Fats/pharmacology , Dietary Supplements , Fish Oils/pharmacology , Linoleic Acids, Conjugated/metabolism , Milk/chemistry , Plant Oils/pharmacology , Animal Feed/analysis , Animals , Dairying/methods , Diet/veterinary , Dietary Fats/administration & dosage , Dietary Fats/metabolism , Eating/physiology , Fats/chemistry , Feeding Methods/veterinary , Female , Fish Oils/administration & dosage , Fish Oils/metabolism , Lactation/metabolism , Milk/enzymology , Milk/metabolism , Plant Oils/administration & dosage , Plant Oils/metabolism , Random Allocation , Stearoyl-CoA Desaturase/metabolism , Sunflower Oil
10.
J Dairy Sci ; 90(6): 2897-904, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17517729

ABSTRACT

The objective of this study was to determine the long-term effect on milk conjugated linoleic acid (cis-9, trans-11 CLA) of adding fish oil (FO) and sunflower oil (SFO) to the diets of partially grazing dairy cows. Fourteen Holstein cows were divided into 2 groups (7 cows/treatment) and fed either a control or oil-supplemented diet for 8 wk while partially grazing pasture. Cows in group 1 were fed a grain mix diet (8.0 kg/d, DM basis) containing 400 g of saturated animal fat (control). Cows in the second group were fed the same grain mix diet except the saturated animal fat was replaced with 100 g of FO and 300 g of SFO. Cows were milked twice a day and milk samples were collected weekly throughout the trial. Both groups grazed together on alfalfa-based pasture ad libitum and were fed their treatment diets after the morning and afternoon milking. Milk production (30.0 and 31.2 kg/d), milk fat percentages (3.64 and 3.50), milk fat yield (1.08 and 1.09 kg/d), milk protein percentages (2.97 and 2.88), and milk protein yield (0.99 and 0.91 kg/d) for diets 1 and 2, respectively, were not affected by the treatment diets. The concentrations of cis-9, trans-11 CLA (1.64 vs. 0.84 g/100 g of fatty acids) and vaccenic acid (5.11 vs. 2.20 g/100 g of fatty acids) in milk fat were higher for cows fed the oil-supplemented diet over the 8 wk of oil supplementation. The concentration of cis-9, trans-11 CLA in milk fat reached a maximum (1.0 and 1.64 g/100 g of fatty acids for diets 1 and 2, respectively) in wk 1 for both diets and remained relatively constant thereafter. The concentration of vaccenic acid in milk fat followed the same temporal pattern as cis-9, trans-11 CLA. In conclusion, supplementing the diet of partially grazing cows with FO and SFO increased the milk cis-9, trans-11 CLA content, and that increase remained relatively constant after 1 wk of oil supplementation.


Subject(s)
Cattle/physiology , Fish Oils/administration & dosage , Lactation/metabolism , Linoleic Acids, Conjugated/analysis , Milk/chemistry , Plant Oils/administration & dosage , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Cattle/metabolism , Dietary Fats/administration & dosage , Dietary Fats/metabolism , Dietary Supplements , Female , Fish Oils/metabolism , Linoleic Acids, Conjugated/metabolism , Oleic Acids/administration & dosage , Oleic Acids/metabolism , Plant Oils/metabolism , Random Allocation , Sunflower Oil , Time Factors
11.
J Dairy Sci ; 90(2): 963-9, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17235173

ABSTRACT

The objective of this study was to evaluate the effect of solids dilution rate (SDR) and oil source [soybean oil (SBO) or linseed oil (LSO)] on the ruminal production of trans C18:1 and conjugated linoleic acid (CLA). A dual-flow continuous culture system consisting of 4 fermenters was used in a 4 x 4 Latin square design with a factorial arrangement of treatments over 4 consecutive periods of 10 d each. Treatment diets (50:50 forage to concentrate) were fed at 120 g/d of dry matter (DM) in 3 equal portions. The concentrate mix contained 1% fish oil and either 2% SBO or 2% LSO on a DM basis. Treatments were as follows: 1) SBO at 6%/h SDR, 2) SBO at 3%/h SDR, 3) LSO at 6%/h SDR, and 4) LSO at 3%/h SDR. The oil source by SDR interaction was not significant for trans C18:1 and CLA fatty acids. The concentrations of trans C18:1 and vaccenic acid were greater in effluents when diets were supplemented with SBO vs. LSO (37.11 vs. 34.09 and 32.71 vs. 29.70 mg/g of DM, respectively) and at high SDR than low SDR (37.60 vs. 33.61 and 32.72 vs. 29.61 mg/g of DM, respectively). The concentration of cis-9, trans-11 CLA in effluents was also greater with SBO than LSO (0.81 vs. 0.40 mg/g of DM) supplementation and at high SDR than low SDR (0.68 vs. 0.54 mg/g of DM). Biohydrogenation of linoleic acid and linolenic acid increased at higher SDR within each oil treatment. Based on these results, SBO supplementation at high SDR enhances ruminal production of vaccenic acid, and therefore could potentially enhance cis-9, trans-11 CLA in milk fat through synthesis by Delta9-desaturase.


Subject(s)
Bacteria/metabolism , Dietary Fats, Unsaturated/administration & dosage , Linoleic Acids, Conjugated/biosynthesis , Oleic Acids/biosynthesis , Rumen/microbiology , Animals , Cattle , Fatty Acid Desaturases/metabolism , Female , Fermentation , Fish Oils/administration & dosage , Lactation , Linoleic Acids, Conjugated/analysis , Linseed Oil/administration & dosage , Oleic Acids/analysis , Soybean Oil/administration & dosage , Stearoyl-CoA Desaturase
12.
J Dairy Sci ; 89(11): 4336-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17033021

ABSTRACT

Previous research found that docosahexaenoic acid (C22:6n-3) was a component of fish oil that promotes trans-C18:1 accumulation in ruminal cultures when incubated with linoleic acid. The objective of this study was to determine if eicosatrienoic acid (C20:3n-3) and docosatrienoic acid (C22:3n-3), n-3 fatty acids in fish oil, promote accumulation of trans-C18:1, vaccenic acid (VA) in particular, using cultures of mixed ruminal microorganisms. Treatments consisted of control, control plus 5 mg of C20:3n-3 (ETA), control plus 5 mg of C22:3n-3 (DTA), control plus 15 mg of linoleic acid (LA), control plus 5 mg of C20:3n-3 and 15 mg of linoleic acid (ETALA), and control plus 5 mg of C22:3n-3 and 15 mg of linoleic acid (DTALA). Treatments were incubated in triplicate in 125-mL flasks, and 5 mL of culture contents was taken at 0 and 24 h for fatty acid analysis by gas-liquid chromatography. After 24 h of incubation, the concentrations of trans-C18:1 (0.87, 0.88, and 0.99 mg/culture), and VA (0.52, 0.56, and 0.62 mg/culture) were similar for the control, ETA, and DTA cultures, respectively. The concentrations of trans-C18:1 (5.51, 5.41, and 5.36 mg/culture), and VA (4.78, 4.62, and 4.59 mg/culture) were also similar between LA, ETALA, and DTALA cultures, respectively. These data suggest that C20:3n-3 and C22:3n-3 are not the active components in fish oil that promote VA accumulation when incubated with linoleic acid.


Subject(s)
Cattle/metabolism , Fatty Acids, Omega-3/pharmacology , Oleic Acids/analysis , Rumen/drug effects , Animals , Arachidonic Acids/administration & dosage , Arachidonic Acids/pharmacology , Erucic Acids/administration & dosage , Erucic Acids/pharmacology , Fatty Acids/analysis , Fatty Acids, Omega-3/administration & dosage , Female , Linoleic Acid/administration & dosage , Linoleic Acid/pharmacology , Rumen/metabolism , Rumen/microbiology
13.
J Dairy Sci ; 89(10): 3972-80, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16960073

ABSTRACT

Eight Holstein (189 +/- 57 DIM) and 4 Brown Swiss (126 +/- 49 DIM) multiparous cows were used in a replicated 4 x 4 Latin square with 28-d periods to determine the minimal dietary concentration of fish oil necessary to maximize milk conjugated linoleic acid (CLA) and vaccenic acid (VA). Treatments consisted of a control diet with a 50:50 ratio of forage to concentrate (dry matter basis), and 3 diets with 2% added fat consisting of 0.33% fish oil, 0.67% fish oil, and 1% fish oil with extruded soybeans providing the balance of added fat. Dry matter intake (23.1, 22.6, 22.8, and 22.9 kg/d, for control, low, medium, and high fish oil diets, respectively) was similar for all diets. Milk production (21.5, 23.7, 22.7, and 24.2 kg/d) was higher for cows fed the fat-supplemented diets vs. the control. Milk fat (4.42, 3.81, 3.80, and 4.03%) and true protein (3.71, 3.58, 3.54, and 3.55%) concentrations decreased when cows were fed diets containing supplemental fat. Concentration of milk cis-9,trans-11 CLA (0.55, 1.17, 1.03, and 1.19 g/100 g of fatty acids) was increased similarly by all diets containing supplemental fat. Milk VA (1.12, 2.47, 2.13, and 2.63 g/100 g of fatty acids) was increased most in milk from cows fed the low and high fish oil diets. Milk total n-3 fatty acids were increased (0.82, 0.96, 0.92, and 1.01 g/100 g of fatty acids) by all fat-supplemented diets. The low fish oil diet was as effective at increasing VA and CLA in milk as the high fish oil diet, showing that only low concentrations of dietary fish oil are necessary for increasing concentrations of VA and CLA in milk.


Subject(s)
Cattle/physiology , Dietary Supplements , Fatty Acids/analysis , Fish Oils/administration & dosage , Glycine max , Milk/drug effects , Animal Feed/analysis , Animals , Body Weight , Diet/veterinary , Fatty Acids/physiology , Female , Fish Oils/pharmacology , Lactation/drug effects , Linoleic Acids, Conjugated/analysis , Linoleic Acids, Conjugated/physiology , Milk/chemistry , Milk/physiology , Oleic Acids/analysis , Oleic Acids/physiology , Glycine max/chemistry , Glycine max/physiology
14.
J Dairy Sci ; 88(12): 4334-41, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16291625

ABSTRACT

In a previous in vitro study, mixed ruminal microorganisms converted oleic acid to a variety of trans monenes when grown in batch cultures under constant environmental conditions. To determine whether a similar conversion occurs under environmental conditions more typical of the rumen, conversion of 13C-labeled oleic acid to biohydrogenation intermediates was determined in ruminal microorganisms grown in continuous culture at two pH (5.5 and 6.5) and liquid dilution rates (0.05 and 0.10/h) arranged factorially. After each morning feeding of the dual-flow continuous cultures, 250 mg of oleic acid in 5 mL of ethanol were injected into each culture. On d 10, 250 mg of oleic-1-(13C) replaced the unlabelled oleic acid in ethanol. Trans fatty acids were isolated from culture samples by solid phase extraction, and 13C enrichment and identity of double bond position was determined by gas chromatography-mass spectroscopy. At pH 6.5 and 0.10/h dilution rate, 13C enrichment was detected in all trans-C18:1 isomers having double bond positions from C6 through C16 in the acyl chain. However, when pH or dilution rate in fermentors was lowered, no 13C enrichment was detected in any trans isomer with a double bond position beyond C10. Enrichment in stearic acid increased by reducing culture pH from 6.5 to 5.5, but decreased when dilution rate dropped from 0.10 to 0.05/h. The stearic acid carbons that originated from oleic acid biohydrogenation increased from 30 to 72% when pH dropped from 6.5 to 5.5. The 13C enrichment of trans-10 was reduced under low pH and dilution rate conditions. The results of this study confirm that ruminal microorganisms are capable of converting oleic acid to a wide variety of trans-C18:1 positional isomers when ruminal conditions are favorable (such as the pH 6.5 and 0.10/h dilution rate treatment). However, at low pH and dilution rate, the conversion of oleic acid to trans-C18:1 still occurs, but positional isomers produced are restricted to double bond positions from C6 to C10. Low pH conditions also increased the conversion of oleic acid to stearic acid.


Subject(s)
Bacteria/metabolism , Oleic Acid/metabolism , Rumen/microbiology , Trans Fatty Acids/metabolism , Animals , Bacteria/growth & development , Carbon Isotopes , Cattle , Diet , Fermentation , Gas Chromatography-Mass Spectrometry , Hydrogen-Ion Concentration , Hydrogenation , Rumen/metabolism
15.
J Dairy Sci ; 87(6): 1758-66, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15453490

ABSTRACT

The objective of this study was to determine the effect of feeding a conjugated linoleic acid (CLA) stimulating diet for an extended period of time on milk cis-9, trans-11 CLA and vaccenic acid (VA) concentrations. Twenty cows (16 Holstein and 4 Brown Swiss) were divided into 2 groups (n = 10 per treatment) for a 10-wk study. Cows in group 1 were fed a traditional corn-soybean-basal diet (control), while those in group 2 were fed a blend of 0.5% fish oil from fish meal and 2% soybean oil from extruded soybeans (FMESB) to achieve higher milk fat cis-9, trans-11 CLA and VA. Diets were formulated to contain 18% CP and were composed (dry matter basis) of 50% concentrate mix, 25% corn silage, and 25% alfalfa hay. Dry matter intake was not affected by diet. Milk production increased in cows fed the FMESB diet. Milk fat and milk protein percentages decreased with the FMESB diet; however, milk fat and protein yields were not affected by treatments. Milk fat cis-9, trans-11 CLA and VA concentration (g/100 of fatty acids) and yield (g/d) were 2.5-fold greater for cows fed the FMESB diet over the 10 wk of fat supplementation. For cows fed the FMESB diet, contents of milk fat cis-9, trans-11 CLA and VA gradually increased from the first week of fat supplementation, reached the highest concentrations in wk 3, then gradually decreased during wk 4 and 5 and then remained relatively constant until wk 10. The concentration of cis-9, trans-11 CLA and VA from the control diet was relatively constant over the 10 wk of fat supplementation. Concentrations of cis-9, trans-11 CLA and VA in milk fat can be increased within a week by feeding a blend of fish meal and extruded soybeans, and that increase remains relatively constant after wk 5 of fat supplementation.


Subject(s)
Cattle/metabolism , Fish Oils/administration & dosage , Lactation/metabolism , Linoleic Acids, Conjugated/analysis , Milk/chemistry , Oleic Acids/analysis , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Cattle/physiology , Female , Fish Oils/metabolism , Fish Products , Lactation/physiology , Lipids/analysis , Milk/metabolism , Milk Proteins/analysis , Random Allocation , Soybean Oil , Glycine max
16.
J Dairy Sci ; 87(4): 1047-50, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15259240

ABSTRACT

Previous studies found that feeding dairy cows a blend of fish and soybean oils enhanced milk vaccenic acid (VA) and conjugated linoleic acid (CLA) concentrations more than when the oils were fed separately. In these studies, the authors concluded that a component in fish oil was stimulating ruminal VA production from other sources of unsaturated fatty acids; however, that component was not identified. The objective of this study was to determine whether docosahexaenoic acid (DHA), an omega-3 fatty acid (FA) in fish oil, is the active component that promotes trans-C18:1 FA, VA in particular, accumulation using cultures of mixed ruminal microorganisms. Treatments consisted of control, control plus 5 mg of DHA (DH), control plus 30 mg of soybean oil (SBO), and control plus 5 mg of DHA and 30 mg of SBO (DHSBO). Treatments were incubated in triplicate in 125-mL flasks, and 5 mL of culture contents was taken at 0 and 24 h for fatty acid analysis by gas-liquid chromatography. After 24 h of incubation, the level of trans-C18:1 FA (14.1 and 11.7 mg/culture) and VA (13.0 and 10.2 mg/culture) increased more with added DHA than with added SBO, respectively. Combining DHA and SBO yielded higher quantities of trans-C18:1 FA (21.3 mg/culture) and VA (19.8 mg/culture) in the cultures than either fat source alone. These data suggest that DHA is the component in fish oil that promotes VA accumulation when incubated with linoleic acid.


Subject(s)
Docosahexaenoic Acids/pharmacology , Linoleic Acid/administration & dosage , Oleic Acids/metabolism , Rumen/microbiology , Animals , Bacteria/metabolism , Cattle , Diet , Rumen/metabolism , Soybean Oil/administration & dosage
17.
J Dairy Sci ; 87(3): 645-51, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15202649

ABSTRACT

Previous studies showed conflicting results regarding the ability of ruminal microorganisms to hydrogenate docosahexaenoic acid (C22:6, DHA) and eicosapentaenoic acid (C20:5, EPA). To determine the disappearance of DHA and EPA from mixed ruminal cultures, 2 ruminal in vitro experiments were conducted using graded levels of DHA and EPA. The first experiment examined DHA added at 0, 5, 10, 15, and 20 mg per culture flask. In the second experiment, EPA was added at 0, 5, 10, and 15 mg per culture flask. Docosahexaenoic acid and EPA were incubated in triplicate in 125-mL flasks, and 5 mL of culture contents was taken at 0, 12, and 24 h for fatty acid analysis by gas liquid chromatography. After 24 h of incubation, 4.1, 4.1, 4.0, and 3.3 mg of DHA disappeared from the 5, 10, 15, and 20 mg of DHA cultures, respectively. In the second experiment, 5, 8.3, and 7.1 mg of EPA disappeared after 24 h of incubation for the 5-, 10-, and 15-mg EPA cultures, respectively. Addition of DHA to cultures increased trans-C18:1 fatty acid accumulation by 105, 91, 82, and 74% for the 5, 10-, 15-, and 20-mg cultures, respectively, compared with control. The addition of EPA increased trans-C18:1 fatty acid accumulation by 56, 64, and 55% for the 5-, 10-, and 15-mg EPA cultures, respectively, compared with control. Addition of DHA and EPA to cultures caused a reduction in C18:1 n-9 and C18:2 n-6 biohydrogenation compared with control. Results from these experiments clearly demonstrate the ability of ruminal microorganism to transform DHA and EPA to other fatty acids causing their disappearance from cultures.


Subject(s)
Docosahexaenoic Acids/metabolism , Eicosapentaenoic Acid/metabolism , Rumen/microbiology , Animals , Cattle , Culture Media/chemistry , Fatty Acids/analysis , Fatty Acids/metabolism , Kinetics
18.
J Dairy Sci ; 86(11): 3648-60, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14672195

ABSTRACT

The objective of this study was to examine the effect of feeding fish oil (FO) along with fat sources that varied in saturation of 18 carbon fatty acids (high stearic, high oleic, high linoleic, or high linolenic acids) on rumen, plasma, and milk fatty acid profiles. Four primiparous Holstein cows at 85 d in milk (+/- 40) were assigned to 4 x 4 Latin squares with 4-wk periods. Treatment diets were 1) 1% FO plus 2% commercial fat high in stearic acid (HS); 2) 1% FO plus 2% fat from high oleic acid sunflower seeds (HO); 3) 1% FO plus 2% fat from high linoleic acid sunflower seeds (HLO); and 4) 1% FO plus 2% fat from flax seeds (high linolenic; HLN). Diets were formulated to contain 18% crude protein and were composed of 50% (dry basis) concentrate mix, 25% corn silage, 12.5% alfalfa silage, and 12.5% alfalfa hay. Milk production, milk protein percentages and yields, and dry matter intake were similar across diets. Milk fat concentrations and yields were least for HO and HLO diets. The proportion of milk cis-9, trans-11 conjugated linoleic acid (CLA; 0.71, 0.99, 1.71, and 1.12 g/100 g fatty acids, respectively), and vaccenic acid (TVA; 1.85, 2.60, 4.14, and 2.16 g/100 g fatty acids, respectively) were greatest with the HLO diet. The proportions of ruminal cis-9, trans-11 CLA (0.09, 0.16, 0.18, and 0.16 g/100 g fatty acids, respectively) were similar for the HO, HLO, and HLN diets and all were higher than for the HS diet. The proportions of TVA (2.85, 4.36, 8.69, and 4.64 g/100 g fatty acids, respectively) increased with the HO, HLO, and HLN diets compared with the HS diets, and the increase was greatest with the HLO diet. The effects of fat supplements on ruminal TVA concentrations were also reflected in plasma triglycerides, (2.75, 4.64, 8.77, and 5.42 g/100 g fatty acids, respectively); however, there were no differences in the proportion of cis-9, trans-11 CLA (0.06, 0.07, 0.06, and 0.07 g/100 g fatty acids, respectively). This study further supports the significant role for mammary delta-9 desaturase in milk cis-9, trans-11 CLA production.


Subject(s)
Cattle/metabolism , Fish Oils/administration & dosage , Linoleic Acids, Conjugated/analysis , Milk/chemistry , Oleic Acids/analysis , Rumen/chemistry , Animal Nutritional Physiological Phenomena , Animals , Cattle/blood , Dietary Fats/administration & dosage , Fats/analysis , Female , Fish Oils/chemistry , Fish Oils/metabolism , Linoleic Acids, Conjugated/blood , Oleic Acids/blood , Random Allocation , Triglycerides/blood
19.
J Dairy Sci ; 86(7): 2428-37, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12906061

ABSTRACT

Twelve multiparous Holstein cows (63 +/- 24 d in milk) were used in a replicated 4 x 4 Latin square with 28-d periods to evaluate conventional and high oil corn grains when fed at two different forage-to-concentrate ratios. Dietary treatments consisted of conventional or high oil corn supplementing a diet with a 25:25:50 mixture of corn silage: alfalfa: concentrate mix, or a high forage diet with a 30:30:40 mixture of corn silage: alfalfa: concentrate mix. Dry matter intake (28.1, 28.7, 26.9, and 26.2 kg/d for normal diets with conventional and high oil corn, and high forage diets with conventional and high oil corn, respectively) and milk yields (36.8, 37.2, 35.5, and 35.2 kg/d) were similar for conventional and high oil corn diets and were lower with the high forage diet, regardless of corn source. Milk fat concentrations were greater when cows were fed diets containing 60% forage (4.03 vs. 3.88%, for the 60 and 50% forages, respectively), but milk protein concentrations were not affected by forage content. Corn source did not affect milk fat or protein concentrations. Long-chain fatty acid concentrations, unsaturated fatty acid concentrations, and total 18:1 fatty acid concentrations were greater when cows were fed high oil corn but were unaffected by forage content of the diet. Concentrations of transvaccenic acid (0.58, 0.81, 0.62, and 0.69 g/100 g of fatty acids) and cis-9, trans-11 conjugated linoleic acid (0.28, 0.39, 0.32, and 0.33 g/100 g of fatty acids) were greater when cows were fed high oil compared with conventional corn when fed 50% forage but were similar for both corn sources at 60% forage. Total n-3 fatty acids were not affected by corn source or forage content. High forage diets decreased milk production and increased milk fat concentration. Feeding high oil corn increased concentrations of long-chain, unsaturated, transvaccenic, and conjugated linoleic fatty acids in milk; however, production of transvaccenic and conjugated linoleic acids were attenuated by high forage diet.


Subject(s)
Animal Nutritional Physiological Phenomena , Cattle/physiology , Corn Oil/administration & dosage , Dietary Fats, Unsaturated/administration & dosage , Lactation , Milk/chemistry , Animal Feed/analysis , Animals , Body Weight , Diet , Dietary Proteins/administration & dosage , Eating , Energy Intake , Fatty Acids/analysis , Female , Lactose/analysis , Lipids/analysis , Medicago sativa , Parity , Silage , Zea mays
20.
J Dairy Sci ; 86(3): 944-53, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12703631

ABSTRACT

The objective of this experiment was to examine the effect of feeding fish oil (FO) along with fat sources that varied in their fatty acid compositions (high stearic, high oleic, high linoleic, or high linolenic acids) to determine which combination would lead to maximum conjugated linoleic acid (cis-9,trans-11 CLA) and transvaccenic acid (TVA) concentrations in milk fat. Twelve Holstein cows (eight multiparous and four primiparous cows) at 73 (+/- 32) DIM were used in a 4 x 4 Latin square with 4-wk periods. Treatment diets were 1) 1% FO plus 2% fat source high in stearic acid (HS), 2) 1% FO plus 2% fat from high oleic acid sunflower seeds (HO), 3) 1% FO plus 2% fat from high linoleic acid sunflower seeds (HLO), and 4) 1% FO plus 2% fat from flax seeds (high linolenic; HLN). Diets formulated to contain 18% crude protein were composed of 50% (dry basis) concentrate mix, 25% corn silage, 12.5% alfalfa haylage, and 12.5% alfalfa hay. Milk production (35.8, 36.3, 34.9, and 35.0 kg/d for diets 1 to 4) was similar for all diets. Milk fat percentages (3.14, 2.81, 2.66, and 3.08) and yields (1.13, 1.02, 0.93, and 1.08 kg/d) for diets 1 to 4 were lowest for HLO. Milk protein percentages (3.04, 3.03, 3.10, and 3.08) and dry matter intake (DMI) (25.8, 26.0, 26.2, and 26.2 kg/d) for diets 1 to 4 were similar for all diets. Milk cis-9,trans-11 CLA concentrations (0.70, 1.04, 1.70, and 1.06 g/100 g fatty acids) for diet 1 to 4 and yields (7.7, 10.7, 15.8, and 11.3 g/d) for diets 1 to 4 were greatest with HLO and were least with HS. Milk cis-9,trans-11 CLA concentrations and yields were similar for cows fed the HO and the HLN diets. Similar to milk cis-9,trans-11 CLA, milk TVA concentration (1.64, 2.49, 3.74, and 2.41 g/100 g fatty acids) for diets 1 to 4 was greatest with the HLO diet and least with the HS diet. Feeding a high linoleic acid fat source with fish oil most effectively increased concentrations and yields of milk cis-9,trans-11 CLA and TVA.


Subject(s)
Cattle/physiology , Diet , Dietary Fats/administration & dosage , Fatty Acids/administration & dosage , Fish Oils/administration & dosage , Linoleic Acid/analysis , Milk/chemistry , Animal Nutritional Physiological Phenomena , Animals , Dietary Proteins/administration & dosage , Fatty Acids/analysis , Female , Helianthus , Lactation , Linoleic Acid/administration & dosage , Lipids/analysis , Medicago sativa , Oleic Acid/administration & dosage , Oleic Acids/analysis , Seeds , Silage , Stearic Acids/administration & dosage , Zea mays , alpha-Linolenic Acid/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...