Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Artif Intell ; 7: 1345445, 2024.
Article in English | MEDLINE | ID: mdl-38444962

ABSTRACT

Hate Speech Detection in Arabic presents a multifaceted challenge due to the broad and diverse linguistic terrain. With its multiple dialects and rich cultural subtleties, Arabic requires particular measures to address hate speech online successfully. To address this issue, academics and developers have used natural language processing (NLP) methods and machine learning algorithms adapted to the complexities of Arabic text. However, many proposed methods were hampered by a lack of a comprehensive dataset/corpus of Arabic hate speech. In this research, we propose a novel multi-class public Arabic dataset comprised of 403,688 annotated tweets categorized as extremely positive, positive, neutral, or negative based on the presence of hate speech. Using our developed dataset, we additionally characterize the performance of multiple machine learning models for Hate speech identification in Arabic Jordanian dialect tweets. Specifically, the Word2Vec, TF-IDF, and AraBert text representation models have been applied to produce word vectors. With the help of these models, we can provide classification models with vectors representing text. After that, seven machine learning classifiers have been evaluated: Support Vector Machine (SVM), Logistic Regression (LR), Naive Bays (NB), Random Forest (RF), AdaBoost (Ada), XGBoost (XGB), and CatBoost (CatB). In light of this, the experimental evaluation revealed that, in this challenging and unstructured setting, our gathered and annotated datasets were rather efficient and generated encouraging assessment outcomes. This will enable academics to delve further into this crucial field of study.

2.
Heliyon ; 9(9): e19848, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810168

ABSTRACT

A non-linear system of differential equations was used to explain the spread of the COVID-19 virus and a SEIQR model was developed and tested to provide insights into the spread of the pandemic. This article, which is related to the aforementioned work as well as other work covering variations of SIR models, Hermite Wavelets Transform, and also the Generalized Compartmental COVID-19 model, we develop a mathematical control model and apply it to represent optimal vaccination strategy against COVID-19 using Pontryagin's Maximum Principle and also factoring in the effect of facemasks on the spread of the virus. As background work, we analyze the mathematical epidemiology model with the facemask effect on both reproduction number and stability, we also analyze the difference between confirmed COVID-19 cases of the Quarantine class and anonymous cases of the Infectious class that is expected to recover. We also apply control theory to mine insights for effective virus spread prevention strategies. Our models are validated using Matlab mathematical model validation tools. Statistical tests against data from Jordan are used to validate our work including the modeling of the relation between the facemask effect and COVID-19 spread. Furthermore, the relation between control measure ξ, cost, and Infected cases is also studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...