Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2862, 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38311645

ABSTRACT

More focus has recently been placed on enhancing the strength, elastic modulus, coefficient of thermal expansion (CTE), wear and corrosion resistance, and other qualities of aluminum (Al) alloys by varying the quantity of ceramics added for a range of industrial uses. In this regard, Al-4.2-Cu-1.6Mg matrix nanocomposites reinforced with nano-ZrO2 particles have been created using the powder metallurgy approach. The microstructure and particle size distributions of the produced powders were analyzed using a diffraction particle size analyzer, XRD, TEM, and SEM. To achieve good sinterability, the powders were compacted and sintered in argon. The sintered nanocomposites' mechanical, elastic, and physicochemical characteristics were measured. Additionally, the behavior of corrosion, wear, and thermal expansion were examined. The results showed a decrease in the particle sizes of the Al-Cu-Mg alloy by adding ZrO2 nanoparticles up to 45.8 nm for the composite containing 16 wt.% ZrO2. By increasing the sintering temperature to 570 °C, the densification of nanocomposites was enhanced. Also, the coefficient of thermal expansion and wear rate remarkably decreased by about 28 and 37.5% by adding 16 wt.% ZrO2. Moreover, microhardness yield, strength, and Young's modulus were enhanced to 161, 145, and 64%, respectively, after adding 16 wt.% ZrO2. In addition, increasing the exposure time was responsible for decreasing the corrosion rate for the same sample.

2.
Polymers (Basel) ; 13(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34578058

ABSTRACT

In this study, brass (Cu/Zn) reinforced polymer composites with different proportions of brass powders were fabricated. Different types of nuclear shielding parameters such as mass and linear attenuation coefficients, radiation protection efficiency, half and tenth value layers, and effective atomic number values were determined experimentally and theoretically in the energy range of 0.060-1.408 MeV in terms of gamma-ray shielding capabilities of fabricated polymer composites. A high Purity Germanium detector (HPGe) in conjunction with a Multi-Channel Analyzer (MCA) and twenty-two characteristic gamma-ray energies have been used in the experimental phase. In addition, the exposure and energy absorption buildup factors of reinforced Cu/Zn composites were calculated, and relative dose distribution values were computed to verify them. Proton mass stopping power (ΨP), proton projected range (ΦP), alpha mass stopping power (ΨA), and alpha projected range (ΦA) parameters, which indicate the interactions of the produced composites with charged particle radiation, were investigated. Fast neutron removal cross-section (ΣR) results were determined to give an idea in terms of neutron shielding. According to the obtained results, it is reported that the CuZn20 coded sample's ability to attenuate gamma-ray and charged particle radiation is more efficient than that of other prepared composites. A CuZn05 coded sample was found to be more suitable for neutron shielding capability.

3.
Materials (Basel) ; 11(11)2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30400162

ABSTRACT

The effect of isothermal multidirectional forging (IMF) on the microstructure evolution of a conventional Al⁻Mg-based alloy was studied in the strain range of 1.5 to 6.0, and in the temperature range of 200 to 500 °C. A mean grain size in the near-surface layer decreased with increasing cumulative strain after IMF at 400 °C and 500 °C; the grain structure was inhomogeneous, and consisted of coarse and fine recrystallized grains. There was no evidence of recrystallization when the micro-shear bands were observed after IMF at 200 and 300 °C. Thermomechanical treatment, including IMF followed by 50% cold rolling and annealing at 450 °C for 30 min, produced a homogeneous equiaxed grain structure with a mean grain size of 5 µm. As a result, the fine-grained sheets exhibited a yield strength and an elongation to failure 30% higher than that of the sheets processed with simple thermomechanical treatment. The IMF technique can be successfully used to produce fine-grained materials with improved mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...