Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IET Nanobiotechnol ; 16(3): 92-101, 2022 May.
Article in English | MEDLINE | ID: mdl-35332980

ABSTRACT

Silver nanoparticles (AgNPs) have shown potential applications in drug delivery. In this study, the AgNPs was prepared from silver nitrate in the presence of alginate as a capping agent. The ciprofloxacin (Cipro) was loaded on the surface of AgNPs to produce Cipro-AgNPs nanocomposite. The characteristics of the Cipro-AgNPs nanocomposite were studied by X-ray diffraction (XRD), UV-Vis, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier-transform infra-red analysis (FT-IR) and zeta potential analyses. The XRD of AgNPs and Cipro-AgNPs nanocomposite data showed that both have a crystalline structure in nature. The FT-IR data indicate that the AgNPs have been wrapped by the alginate and loaded with the Cipro drug. The TEM image showed that the Cipro-AgNPs nanocomposites have an average size of 96 nm with a spherical shape. The SEM image for AgNPs and Cipro-AgNPs nanocomposites confirmed the needle-lumpy shape. The zeta potential for Cipro-AgNPs nanocomposites exhibited a positive charge with a value of 6.5 mV. The TGA for Cipro-AgNPs nanocomposites showed loss of 79.7% in total mass compared to 57.6% for AgNPs which is due to the Cipro loaded in the AgNPs. The release of Cipro from Cipro-AgNPs nanocomposites showed slow release properties which reached 98% release within 750 min, and followed the Hixson-Crowell kinetic model. In addition, the toxicity of AgNPs and Cipro-AgNPs nanocomposites was evaluated using normal (3T3) cell line. The present work suggests that Cipro-AgNPs are suitable for drug delivery.


Subject(s)
Metal Nanoparticles , Alginates , Anti-Bacterial Agents/chemistry , Ciprofloxacin , Metal Nanoparticles/chemistry , Silver , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
2.
Adv Pharm Bull ; 7(2): 313-321, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28761834

ABSTRACT

Purpose: To describe a chemoenzymatic approach joining an enzymatic regioselective hydrolysis of peracetylated N-acetyl-α-D-glucosamine (A) with a mild controlled acyl relocation which resulted 2-acetamido-2 deoxy-1,3,6-tri-O-acetyl-α-D-glucopyranose (1B). Methods: Immobilization of lipase on decaoctyl (DSEOD) and octyl-agarose (OSCL) was carried out as reported by the work of Bastida et al. The newly developed RP-HPLC method for examining the enzymatic hydrolysis was carried out isocratically utilizing a HPLC system. Results: The new approach resulted the target compound (B) in 95% yield after purification utilizing flash column chromatography. Candida rugosa-lipase immobilized ondecaoctyl-sepabeads was the best catalyst in terms of activity and region-selectivity in the hydrolysis of substrate (A), delivering the deacetylation at C6 position (98% general yield). Also, a reversed-phase high-performance liquid-chromatographic (RP-HPLC) method for controlling the region-selective hydrolysis of peracetylated N-acetyl-α-D-glucosamine (A) with a mild monitored acyl movement which led to 2-acetamido-2-deoxy-1,3,6-tri-O-acetyl-α-D-glucopyranose (1B) has additionally been developed. The developed RP-HPLC method was utilized as fingerprints to follow the hydrolysis of substrate (A) and to determine its purity and additionally yield. Furthermore, the acquired compound (B) was further purified by flash chromatography. Compound (B) was further characterized utilizing 1HNMR and mass spectrometry. Conclusion: An efficient chemoenzymatic procedure to optimize the preparation of peracetylated lactosamine B containing acetyl ester as extraordinary protecting group is presented. Compound B is a significant intermediate for the synthesis of pharmacologically active compound (e.g. complex oligosaccharides for biochemical, biophysical, or biological examinations). Besides, reaction monitoring utilizing HPLC proposes more exact information than spectroscopic methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...