Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Phys Eng Sci Med ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862778

ABSTRACT

Alzheimer's disease (AD) is a progressive and incurable neurologi-cal disorder with a rising mortality rate, worsened by error-prone, time-intensive, and expensive clinical diagnosis methods. Automatic AD detection methods using hand-crafted Electroencephalogram (EEG) signal features lack accuracy and reliability. A lightweight convolution neural network for AD detection (LCADNet) is investigated to extract disease-specific features while reducing the detection time. The LCADNet uses two convolutional layers for extracting complex EEG features, two fully connected layers for selecting disease-specific features, and a softmax layer for predicting AD detection probability. A max-pooling layer interlaced between convolutional layers decreases the time-domain redundancy in the EEG signal. The efficiency of the LCADNet and four pre-trained models using transfer learning is compared using a publicly available AD detection dataset. The LCADNet shows the lowest computation complexity in terms of both the number of floating point operations and inference time and the highest classification performance across six measures. The generalization of the LCADNet is assessed by cross-testing it with two other publicly available AD detection datasets. It outperforms existing EEG-based AD detection methods with an accuracy of 98.50%. The LCADNet may be a valuable aid for neurologists and its Python implemen- tation can be found at github.com/SandeepSangle12/LCADNet.git.

2.
Data Brief ; 54: 110539, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38882192

ABSTRACT

The study presents a segmented dataset comprising dental periapical X-ray images from both healthy and diseased patients. The ability to differentiate between normal and abnormal dental periapical X-rays is pivotal for accurate diagnosis of dental pathology. These X-rays contain crucial information, offering in- sights into the physiological and pathological conditions of teeth and surrounding structures. The dataset outlined in this article encompasses dental periapical X-ray images obtained during routine examinations and treatment procedures of patients at the oral and dental health department of a local government hos- pital in North Jordan. Comprising a total of 929 high-quality X-ray images, the dataset includes subjects of varying ages with a spectrum of dental and pulpal diseases, bone loss, periapical diseases, and other abnormalities. Employing an advanced image segmentation approach, the collected dataset is categorized into healthy and diseased dental patients. This labelled dataset serves as a foundation for the development of an automated system capable of detecting dental pathologies, including caries and pulpal diseases, and distinguishing between normal and abnormal cases. Notably, recent advancements in deep learning artificial intelligence have significantly contributed to the creation of advanced dental models for diverse applications. This technology has demonstrated remarkable accuracy in the development of diagnostic and detection tools for various dental problems.

3.
Heliyon ; 10(11): e31629, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845929

ABSTRACT

This paper introduces a new metaheuristic technique known as the Greater Cane Rat Algorithm (GCRA) for addressing optimization problems. The optimization process of GCRA is inspired by the intelligent foraging behaviors of greater cane rats during and off mating season. Being highly nocturnal, they are intelligible enough to leave trails as they forage through reeds and grass. Such trails would subsequently lead to food and water sources and shelter. The exploration phase is achieved when they leave the different shelters scattered around their territory to forage and leave trails. It is presumed that the alpha male maintains knowledge about these routes, and as a result, other rats modify their location according to this information. Also, the males are aware of the breeding season and separate themselves from the group. The assumption is that once the group is separated during this season, the foraging activities are concentrated within areas of abundant food sources, which aids the exploitation. Hence, the smart foraging paths and behaviors during the mating season are mathematically represented to realize the design of the GCR algorithm and carry out the optimization tasks. The performance of GCRA is tested using twenty-two classical benchmark functions, ten CEC 2020 complex functions, and the CEC 2011 real-world continuous benchmark problems. To further test the performance of the proposed algorithm, six classic problems in the engineering domain were used. Furthermore, a thorough analysis of computational and convergence results is presented to shed light on the efficacy and stability levels of GCRA. The statistical significance of the results is compared with ten state-of-the-art algorithms using Friedman's and Wilcoxon's signed rank tests. These findings show that GCRA produced optimal or nearly optimal solutions and evaded the trap of local minima, distinguishing it from the rival optimization algorithms employed to tackle similar problems. The GCRA optimizer source code is publicly available at: https://www.mathworks.com/matlabcentral/fileexchange/165241-greater-cane-rat-algorithm-gcra.

4.
Heliyon ; 10(7): e28147, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689992

ABSTRACT

Deep Convolutional Neural Networks (DCNNs) have shown remarkable success in image classification tasks, but optimizing their hyperparameters can be challenging due to their complex structure. This paper develops the Adaptive Habitat Biogeography-Based Optimizer (AHBBO) for tuning the hyperparameters of DCNNs in image classification tasks. In complicated optimization problems, the BBO suffers from premature convergence and insufficient exploration. In this regard, an adaptable habitat is presented as a solution to these problems; it would permit variable habitat sizes and regulated mutation. Better optimization performance and a greater chance of finding high-quality solutions across a wide range of problem domains are the results of this modification's increased exploration and population diversity. AHBBO is tested on 53 benchmark optimization functions and demonstrates its effectiveness in improving initial stochastic solutions and converging faster to the optimum. Furthermore, DCNN-AHBBO is compared to 23 well-known image classifiers on nine challenging image classification problems and shows superior performance in reducing the error rate by up to 5.14%. Our proposed algorithm outperforms 13 benchmark classifiers in 87 out of 95 evaluations, providing a high-performance and reliable solution for optimizing DNNs in image classification tasks. This research contributes to the field of deep learning by proposing a new optimization algorithm that can improve the efficiency of deep neural networks in image classification.

5.
J Med Syst ; 48(1): 53, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775899

ABSTRACT

Myocardial Infarction (MI) commonly referred to as a heart attack, results from the abrupt obstruction of blood supply to a section of the heart muscle, leading to the deterioration or death of the affected tissue due to a lack of oxygen. MI, poses a significant public health concern worldwide, particularly affecting the citizens of the Chittagong Metropolitan Area. The challenges lie in both prevention and treatment, as the emergence of MI has inflicted considerable suffering among residents. Early warning systems are crucial for managing epidemics promptly, especially given the escalating disease burden in older populations and the complexities of assessing present and future demands. The primary objective of this study is to forecast MI incidence early using a deep learning model, predicting the prevalence of heart attacks in patients. Our approach involves a novel dataset collected from daily heart attack incidence Time Series Patient Data spanning January 1, 2020, to December 31, 2021, in the Chittagong Metropolitan Area. Initially, we applied various advanced models, including Autoregressive Integrated Moving Average (ARIMA), Error-Trend-Seasonal (ETS), Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal (TBATS), and Long Short Time Memory (LSTM). To enhance prediction accuracy, we propose a novel Myocardial Sequence Classification (MSC)-LSTM method tailored to forecast heart attack occurrences in patients using the newly collected data from the Chittagong Metropolitan Area. Comprehensive results comparisons reveal that the novel MSC-LSTM model outperforms other applied models in terms of performance, achieving a minimum Mean Percentage Error (MPE) score of 1.6477. This research aids in predicting the likely future course of heart attack occurrences, facilitating the development of thorough plans for future preventive measures. The forecasting of MI occurrences contributes to effective resource allocation, capacity planning, policy creation, budgeting, public awareness, research identification, quality improvement, and disaster preparedness.


Subject(s)
Deep Learning , Forecasting , Myocardial Infarction , Humans , Myocardial Infarction/epidemiology , Myocardial Infarction/diagnosis , Forecasting/methods , Incidence , Seasons
6.
Tissue Cell ; 88: 102380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615643

ABSTRACT

The use of mesenchymal stem cells (MSCs) in cartilage regeneration has gained significant attention in regenerative medicine. This paper reviews the molecular mechanisms underlying MSC-based cartilage regeneration and explores various therapeutic strategies to enhance the efficacy of MSCs in this context. MSCs exhibit multipotent capabilities and can differentiate into various cell lineages under specific microenvironmental cues. Chondrogenic differentiation, a complex process involving signaling pathways, transcription factors, and growth factors, plays a pivotal role in the successful regeneration of cartilage tissue. The chondrogenic differentiation of MSCs is tightly regulated by growth factors and signaling pathways such as TGF-ß, BMP, Wnt/ß-catenin, RhoA/ROCK, NOTCH, and IHH (Indian hedgehog). Understanding the intricate balance between these pathways is crucial for directing lineage-specific differentiation and preventing undesirable chondrocyte hypertrophy. Additionally, paracrine effects of MSCs, mediated by the secretion of bioactive factors, contribute significantly to immunomodulation, recruitment of endogenous stem cells, and maintenance of chondrocyte phenotype. Pre-treatment strategies utilized to potentiate MSCs, such as hypoxic conditions, low-intensity ultrasound, kartogenin treatment, and gene editing, are also discussed for their potential to enhance MSC survival, differentiation, and paracrine effects. In conclusion, this paper provides a comprehensive overview of the molecular mechanisms involved in MSC-based cartilage regeneration and outlines promising therapeutic strategies. The insights presented contribute to the ongoing efforts in optimizing MSC-based therapies for effective cartilage repair.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Regeneration , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Regeneration/physiology , Animals , Chondrogenesis/physiology , Cartilage/metabolism , Cartilage/physiology , Cell Differentiation , Chondrocytes/metabolism , Chondrocytes/cytology , Signal Transduction
7.
Sci Rep ; 14(1): 8660, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622177

ABSTRACT

Agriculture plays a pivotal role in the economic development of a nation, but, growth of agriculture is affected badly by the many factors one such is plant diseases. Early stage prediction of these disease is crucial role for global health and even for game changers the farmer's life. Recently, adoption of modern technologies, such as the Internet of Things (IoT) and deep learning concepts has given the brighter light of inventing the intelligent machines to predict the plant diseases before it is deep-rooted in the farmlands. But, precise prediction of plant diseases is a complex job due to the presence of noise, changes in the intensities, similar resemblance between healthy and diseased plants and finally dimension of plant leaves. To tackle this problem, high-accurate and intelligently tuned deep learning algorithms are mandatorily needed. In this research article, novel ensemble of Swin transformers and residual convolutional networks are proposed. Swin transformers (ST) are hierarchical structures with linearly scalable computing complexity that offer performance and flexibility at various scales. In order to extract the best deep key-point features, the Swin transformers and residual networks has been combined, followed by Feed forward networks for better prediction. Extended experimentation is conducted using Plant Village Kaggle datasets, and performance metrics, including accuracy, precision, recall, specificity, and F1-rating, are evaluated and analysed. Existing structure along with FCN-8s, CED-Net, SegNet, DeepLabv3, Dense nets, and Central nets are used to demonstrate the superiority of the suggested version. The experimental results show that in terms of accuracy, precision, recall, and F1-rating, the introduced version shown better performances than the other state-of-art hybrid learning models.


Subject(s)
Mental Recall , Recognition, Psychology , Agriculture , Algorithms , Plant Diseases
8.
Heliyon ; 10(7): e28681, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586386

ABSTRACT

Sonar sound datasets are of significant importance in the domains of underwater surveillance and marine research as they enable experts to discern intricate patterns within the depths of the water. Nevertheless, the task of classifying sonar sound datasets continues to pose significant challenges. In this study, we present a novel approach aimed at enhancing the precision and efficacy of sonar sound dataset classification. The integration of deep long-short-term memory (DLSTM) and convolutional neural networks (CNNs) models is employed in order to capitalize on their respective advantages while also utilizing distinctive feature engineering techniques to achieve the most favorable outcomes. Although DLSTM networks have demonstrated effectiveness in tasks involving sequence classification, attaining their optimal performance necessitates careful adjustment of hyperparameters. While traditional methods such as grid and random search are effective, they frequently encounter challenges related to computational inefficiencies. This study aims to investigate the unexplored capabilities of the fuzzy slime mould optimizer (FUZ-SMO) in the context of LSTM hyperparameter tuning, with the objective of addressing the existing research gap in this area. Drawing inspiration from the adaptive behavior exhibited by slime moulds, the FUZ-SMO proposes a novel approach to optimization. The amalgamated model, which combines CNN, LSTM, fuzzy, and SMO, exhibits a notable improvement in classification accuracy, outperforming conventional LSTM architectures by a margin of 2.142%. This model not only demonstrates accelerated convergence milestones but also displays significant resilience against overfitting tendencies.

9.
Sci Rep ; 14(1): 5434, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443569

ABSTRACT

This study presents the K-means clustering-based grey wolf optimizer, a new algorithm intended to improve the optimization capabilities of the conventional grey wolf optimizer in order to address the problem of data clustering. The process that groups similar items within a dataset into non-overlapping groups. Grey wolf hunting behaviour served as the model for grey wolf optimizer, however, it frequently lacks the exploration and exploitation capabilities that are essential for efficient data clustering. This work mainly focuses on enhancing the grey wolf optimizer using a new weight factor and the K-means algorithm concepts in order to increase variety and avoid premature convergence. Using a partitional clustering-inspired fitness function, the K-means clustering-based grey wolf optimizer was extensively evaluated on ten numerical functions and multiple real-world datasets with varying levels of complexity and dimensionality. The methodology is based on incorporating the K-means algorithm concept for the purpose of refining initial solutions and adding a weight factor to increase the diversity of solutions during the optimization phase. The results show that the K-means clustering-based grey wolf optimizer performs much better than the standard grey wolf optimizer in discovering optimal clustering solutions, indicating a higher capacity for effective exploration and exploitation of the solution space. The study found that the K-means clustering-based grey wolf optimizer was able to produce high-quality cluster centres in fewer iterations, demonstrating its efficacy and efficiency on various datasets. Finally, the study demonstrates the robustness and dependability of the K-means clustering-based grey wolf optimizer in resolving data clustering issues, which represents a significant advancement over conventional techniques. In addition to addressing the shortcomings of the initial algorithm, the incorporation of K-means and the innovative weight factor into the grey wolf optimizer establishes a new standard for further study in metaheuristic clustering algorithms. The performance of the K-means clustering-based grey wolf optimizer is around 34% better than the original grey wolf optimizer algorithm for both numerical test problems and data clustering problems.

10.
Heliyon ; 10(5): e26665, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486727

ABSTRACT

This research introduces the Multi-Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi-objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition-Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non-dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi-objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real-world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two-bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non-dominated sorting grey wolf optimizer (NSGWO), multiobjective multi-verse optimization (MOMVO), non-dominated sorting genetic algorithm (NSGA-II), decomposition-based multiobjective evolutionary algorithm (MOEA/D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.

12.
Heliyon ; 10(4): e26369, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404848

ABSTRACT

In this study, we tackle the challenge of optimizing the design of a Brushless Direct Current (BLDC) motor. Utilizing an established analytical model, we introduced the Multi-Objective Generalized Normal Distribution Optimization (MOGNDO) method, a biomimetic approach based on Pareto optimality, dominance, and external archiving. We initially tested MOGNDO on standard multi-objective benchmark functions, where it showed strong performance. When applied to the BLDC motor design with the objectives of either maximizing operational efficiency or minimizing motor mass, the MOGNDO algorithm consistently outperformed other techniques like Ant Lion Optimizer (ALO), Ion Motion Optimization (IMO), and Sine Cosine Algorithm (SCA). Specifically, MOGNDO yielded the most optimal values across efficiency and mass metrics, providing practical solutions for real-world BLDC motor design. The MOGNDO source code is available at: https://github.com/kanak02/MOGNDO.

13.
Environ Monit Assess ; 196(3): 302, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38401024

ABSTRACT

Digital image processing has witnessed a significant transformation, owing to the adoption of deep learning (DL) algorithms, which have proven to be vastly superior to conventional methods for crop detection. These DL algorithms have recently found successful applications across various domains, translating input data, such as images of afflicted plants, into valuable insights, like the identification of specific crop diseases. This innovation has spurred the development of cutting-edge techniques for early detection and diagnosis of crop diseases, leveraging tools such as convolutional neural networks (CNN), K-nearest neighbour (KNN), support vector machines (SVM), and artificial neural networks (ANN). This paper offers an all-encompassing exploration of the contemporary literature on methods for diagnosing, categorizing, and gauging the severity of crop diseases. The review examines the performance analysis of the latest machine learning (ML) and DL techniques outlined in these studies. It also scrutinizes the methodologies and datasets and outlines the prevalent recommendations and identified gaps within different research investigations. As a conclusion, the review offers insights into potential solutions and outlines the direction for future research in this field. The review underscores that while most studies have concentrated on traditional ML algorithms and CNN, there has been a noticeable dearth of focus on emerging DL algorithms like capsule neural networks and vision transformers. Furthermore, it sheds light on the fact that several datasets employed for training and evaluating DL models have been tailored to suit specific crop types, emphasizing the pressing need for a comprehensive and expansive image dataset encompassing a wider array of crop varieties. Moreover, the survey draws attention to the prevailing trend where the majority of research endeavours have concentrated on individual plant diseases, ML, or DL algorithms. In light of this, it advocates for the development of a unified framework that harnesses an ensemble of ML and DL algorithms to address the complexities of multiple plant diseases effectively.


Subject(s)
Deep Learning , Environmental Monitoring , Neural Networks, Computer , Algorithms , Machine Learning
14.
Sci Rep ; 14(1): 534, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177156

ABSTRACT

The most widely used method for detecting Coronavirus Disease 2019 (COVID-19) is real-time polymerase chain reaction. However, this method has several drawbacks, including high cost, lengthy turnaround time for results, and the potential for false-negative results due to limited sensitivity. To address these issues, additional technologies such as computed tomography (CT) or X-rays have been employed for diagnosing the disease. Chest X-rays are more commonly used than CT scans due to the widespread availability of X-ray machines, lower ionizing radiation, and lower cost of equipment. COVID-19 presents certain radiological biomarkers that can be observed through chest X-rays, making it necessary for radiologists to manually search for these biomarkers. However, this process is time-consuming and prone to errors. Therefore, there is a critical need to develop an automated system for evaluating chest X-rays. Deep learning techniques can be employed to expedite this process. In this study, a deep learning-based method called Custom Convolutional Neural Network (Custom-CNN) is proposed for identifying COVID-19 infection in chest X-rays. The Custom-CNN model consists of eight weighted layers and utilizes strategies like dropout and batch normalization to enhance performance and reduce overfitting. The proposed approach achieved a classification accuracy of 98.19% and aims to accurately classify COVID-19, normal, and pneumonia samples.


Subject(s)
COVID-19 , Humans , X-Rays , Radiography , COVID-19/diagnostic imaging , Neural Networks, Computer , Biomarkers
15.
Sci Rep ; 14(1): 1496, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233479

ABSTRACT

Plant image analysis is a significant tool for plant phenotyping. Image analysis has been used to assess plant trails, forecast plant growth, and offer geographical information about images. The area segmentation and counting of the leaf is a major component of plant phenotyping, which can be used to measure the growth of the plant. Therefore, this paper developed a convolutional neural network-based leaf counting model called LC-Net. The original plant image and segmented leaf parts are fed as input because the segmented leaf part provides additional information to the proposed LC-Net. The well-known SegNet model has been utilised to obtain segmented leaf parts because it outperforms four other popular Convolutional Neural Network (CNN) models, namely DeepLab V3+, Fast FCN with Pyramid Scene Parsing (PSP), U-Net, and Refine Net. The proposed LC-Net is compared to the other recent CNN-based leaf counting models over the combined Computer Vision Problems in Plant Phenotyping (CVPPP) and KOMATSUNA datasets. The subjective and numerical evaluations of the experimental results demonstrate the superiority of the LC-Net to other tested models.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Geography , Plant Development , Plant Leaves
16.
Sci Rep ; 14(1): 1816, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245654

ABSTRACT

The exponential distribution optimizer (EDO) represents a heuristic approach, capitalizing on exponential distribution theory to identify global solutions for complex optimization challenges. This study extends the EDO's applicability by introducing its multi-objective version, the multi-objective EDO (MOEDO), enhanced with elite non-dominated sorting and crowding distance mechanisms. An information feedback mechanism (IFM) is integrated into MOEDO, aiming to balance exploration and exploitation, thus improving convergence and mitigating the stagnation in local optima, a notable limitation in traditional approaches. Our research demonstrates MOEDO's superiority over renowned algorithms such as MOMPA, NSGA-II, MOAOA, MOEA/D and MOGNDO. This is evident in 72.58% of test scenarios, utilizing performance metrics like GD, IGD, HV, SP, SD and RT across benchmark test collections (DTLZ, ZDT and various constraint problems) and five real-world engineering design challenges. The Wilcoxon Rank Sum Test (WRST) further confirms MOEDO as a competitive multi-objective optimization algorithm, particularly in scenarios where existing methods struggle with balancing diversity and convergence efficiency. MOEDO's robust performance, even in complex real-world applications, underscores its potential as an innovative solution in the optimization domain. The MOEDO source code is available at: https://github.com/kanak02/MOEDO .

17.
Front Med (Lausanne) ; 10: 1276434, 2023.
Article in English | MEDLINE | ID: mdl-38076239

ABSTRACT

Aims: To assess the diagnostic performance of digital breast tomosynthesis (DBT) in older women across varying breast densities and to compare its effectiveness for cancer detection with 2D mammography and ultrasound (U/S) for different breast density categories. Furthermore, our study aimed to predict the potential reduction in unnecessary additional examinations among older women due to DBT. Methods: This study encompassed a cohort of 224 older women. Each participant underwent both 2D mammography and digital breast tomosynthesis examinations. Supplementary views were conducted when necessary, including spot compression and magnification, ultrasound, and recommended biopsies. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the curve (AUC) were calculated for 2D mammography, DBT, and ultrasound. The impact of DBT on diminishing the need for supplementary imaging procedures was predicted through binary logistic regression. Results: In dense breast tissue, DBT exhibited notably heightened sensitivity and NPV for lesion detection compared to non-dense breasts (61.9% vs. 49.3%, p < 0.001) and (72.9% vs. 67.9%, p < 0.001), respectively. However, the AUC value of DBT in dense breasts was lower compared with non-dense breasts (0.425 vs. 0.670). Regarding the ability to detect calcifications, DBT demonstrated significantly improved sensitivity and NPV in dense breasts compared to non-dense breasts (100% vs. 99.2%, p < 0.001) and (100% vs. 94.7%, p < 0.001), respectively. On the other hand, the AUC value of DBT was slightly lower in dense breasts compared with non-dense (0.682 vs. 0.711). Regarding lesion detection for all cases between imaging examinations, the highest sensitivity was observed in 2D mammography (91.7%, p < 0.001), followed by DBT (83.7%, p < 0.001), and then ultrasound (60.6%, p < 0.001). In dense breasts, sensitivity for lesion detection was highest in 2D mammography (92.9%, p < 0.001), followed by ultrasound (76.2%, p < 0.001), and the last one was DBT. In non-dense breasts, sensitivities were 91% (p < 0.001) for 2D mammography, 50.7% (p < 0.001) for ultrasound, and 49.3% (p < 0.001) for DBT. In terms of calcification detection, DBT displayed significantly superior sensitivity compared to 2D mammography in both dense and non-dense breasts (100% vs. 91.4%, p < 0.001) and (99.2% vs. 78.5%, p < 0.001), respectively. However, the logistic regression model did not identify any statistically significant relationship (p > 0.05) between DBT and the four dependent variables. Conclusion: Our findings indicate that among older women, DBT does not significantly decrease the requirement for further medical examinations.

18.
Math Biosci Eng ; 20(11): 19086-19132, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-38052592

ABSTRACT

The prairie dog optimization (PDO) algorithm is a metaheuristic optimization algorithm that simulates the daily behavior of prairie dogs. The prairie dog groups have a unique mode of information exchange. They divide into several small groups to search for food based on special signals and build caves around the food sources. When encountering natural enemies, they emit different sound signals to remind their companions of the dangers. According to this unique information exchange mode, we propose a randomized audio signal factor to simulate the specific sounds of prairie dogs when encountering different foods or natural enemies. This strategy restores the prairie dog habitat and improves the algorithm's merit-seeking ability. In the initial stage of the algorithm, chaotic tent mapping is also added to initialize the population of prairie dogs and increase population diversity, even use lens opposition-based learning strategy to enhance the algorithm's global exploration ability. To verify the optimization performance of the modified prairie dog optimization algorithm, we applied it to 23 benchmark test functions, IEEE CEC2014 test functions, and six engineering design problems for testing. The experimental results illustrated that the modified prairie dog optimization algorithm has good optimization performance.

19.
Diagnostics (Basel) ; 13(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37998575

ABSTRACT

The paper focuses on the hepatitis C virus (HCV) infection in Egypt, which has one of the highest rates of HCV in the world. The high prevalence is linked to several factors, including the use of injection drugs, poor sterilization practices in medical facilities, and low public awareness. This paper introduces a hyOPTGB model, which employs an optimized gradient boosting (GB) classifier to predict HCV disease in Egypt. The model's accuracy is enhanced by optimizing hyperparameters with the OPTUNA framework. Min-Max normalization is used as a preprocessing step for scaling the dataset values and using the forward selection (FS) wrapped method to identify essential features. The dataset used in the study contains 1385 instances and 29 features and is available at the UCI machine learning repository. The authors compare the performance of five machine learning models, including decision tree (DT), support vector machine (SVM), dummy classifier (DC), ridge classifier (RC), and bagging classifier (BC), with the hyOPTGB model. The system's efficacy is assessed using various metrics, including accuracy, recall, precision, and F1-score. The hyOPTGB model outperformed the other machine learning models, achieving a 95.3% accuracy rate. The authors also compared the hyOPTGB model against other models proposed by authors who used the same dataset.

20.
Biomimetics (Basel) ; 8(7)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37999193

ABSTRACT

The COVID-19 epidemic poses a worldwide threat that transcends provincial, philosophical, spiritual, radical, social, and educational borders. By using a connected network, a healthcare system with the Internet of Things (IoT) functionality can effectively monitor COVID-19 cases. IoT helps a COVID-19 patient recognize symptoms and receive better therapy more quickly. A critical component in measuring, evaluating, and diagnosing the risk of infection is artificial intelligence (AI). It can be used to anticipate cases and forecast the alternate incidences number, retrieved instances, and injuries. In the context of COVID-19, IoT technologies are employed in specific patient monitoring and diagnosing processes to reduce COVID-19 exposure to others. This work uses an Indian dataset to create an enhanced convolutional neural network with a gated recurrent unit (CNN-GRU) model for COVID-19 death prediction via IoT. The data were also subjected to data normalization and data imputation. The 4692 cases and eight characteristics in the dataset were utilized in this research. The performance of the CNN-GRU model for COVID-19 death prediction was assessed using five evaluation metrics, including median absolute error (MedAE), mean absolute error (MAE), root mean squared error (RMSE), mean square error (MSE), and coefficient of determination (R2). ANOVA and Wilcoxon signed-rank tests were used to determine the statistical significance of the presented model. The experimental findings showed that the CNN-GRU model outperformed other models regarding COVID-19 death prediction.

SELECTION OF CITATIONS
SEARCH DETAIL
...