Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37895251

ABSTRACT

The major challenges of maize production and productivity in Sub-Saharan Africa (SSA) include Striga hermonthica infestation, recurrent drought, and low soil nitrogen (low N). This study assessed the following: (i) accelerated genetic advancements in grain yield and other measured traits of early-maturing maize hybrids, (ii) ideal test environments for selecting early-maturing multiple-stress tolerant hybrids, and (iii) high-yielding and stable hybrids across multiple-stress and non-stress environments. Fifty-four hybrids developed during three periods of genetic enhancement (2008-2010, 2011-2013, and 2014-2016) were evaluated in Nigeria, The Republic of Benin, and Ghana under multiple stressors (Striga infestation, managed drought, and Low N) and non-stress environments from 2017 to 2019. Under multiple-stress and non-stress environments, annual genetic gains from selection in grain yield of 84.72 kg ha-1 (4.05%) and 61 kg ha-1 (1.56%), respectively, were recorded. Three mega-environments were identified across 14 stress environments. Abuja was identified as an ideal test environment for selecting superior hybrids. The hybrid TZdEI 352 × TZEI 355 developed during period 3 was the most outstanding under multiple-stress and non-stress environments. On-farm testing of this hybrid is required to verify its superior performance for commercialization in SSA. Considerable progress has been made in the genetic improvement of early-maturing maize hybrids for tolerance of multiple stressors and high yield. The identified core testing sites of this study could be used to enhance the testing and selection of promising hybrids.


Subject(s)
Striga , Zea mays , Zea mays/genetics , Phenotype , Nigeria , Edible Grain/genetics , Soil
2.
Plants (Basel) ; 11(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35567208

ABSTRACT

Maize (Zea mays L.) is an important staple, as well as cash crop, in sub-Saharan Africa (SSA). However, its production is severely constrained by low soil nitrogen (low N). Fifty-four early-maturing hybrids developed during three breeding periods, (2008-2010, 2011-2013 and 2014-2016) were evaluated under low (30 kg ha-1) and high (120 kg ha-1) soil nitrogen (N) in Ile-Ife and Mokwa, Nigeria, from 2017 to 2019. The study was designed to (i) determine the genetic gains in grain yield of the early-maturing maize hybrids developed during the three breeding periods, (ii) determine the relationship between grain yield and other agronomic traits and (iii) identify the highest-yielding and most stable hybrids under low- and high-N environments. The 54 hybrids were evaluated using a 6 × 9 lattice design with three replications. Mean squares for hybrids were significant for measured traits under low- and high-N environments, except the mean squares for stalk lodging and EPP under low N. Annual genetic gains in grain yield were 75 kg ha-1 year-1 (2.91%) and 55 kg ha-1 year-1 (1.33%) under low- and high-N environments, respectively, indicating that substantial gains were achieved in the genetic enhancement of the early-maturing hybrids. The hybrids TZdEI 314 × TZdEI 105, TZdEI 378 × TZdEI 173, ENT 12 × TZEI 48 and TZdEI 352 × TZdEI 315 were identified as the highest-yielding and most stable across test environments and should be tested extensively on farms and commercialized in SSA.

3.
Plants (Basel) ; 11(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35406944

ABSTRACT

Availability of maize (Zea mays L.) hybrids with elevated provitamin A (PVA) levels and tolerance to contrasting stresses would improve food self-sufficiency and combat malnutrition in sub-Saharan Africa (SSA). This study was conducted to (i) analyze selected PVA inbreds of extra-early maturity for carotenoid content, (ii) estimate the combining abilities of the inbred lines for grain yield and other agronomic traits, (iii) assign inbred lines to distinct heterotic groups (HGs), (iv) identify testers among the inbred lines, and (v) determine grain yield and stability of the PVA hybrids across contrasting environments. Thirty-three extra-early maturing inbred lines selected for high carotenoid content were crossed with four inbred testers to obtain 132 testcrosses. The testcrosses, six tester × tester crosses and two hybrid checks, were evaluated across three Striga-infested, four drought and five optimal growing environments in Nigeria, 2014-2016. Results of the chemical analysis revealed that inbred lines TZEEIOR 109, TZEEIOR 30, TZEEIOR 41, TZEEIOR 97, TZEEIOR 42, and TZEEIOR 140 had intermediate PVA levels. Both additive and nonadditive gene actions were important in the inheritance of grain yield and other measured traits under stress and optimal environments. However, additive gene action was preponderant over the nonadditive gene action. The inbred lines were classified into three HGs across environments. Inbreds TZEEIOR 249 and TZEEIOR 30 were identified as testers for HGs I and II, respectively. The hybrid TZEEI 79 × TZEEIOR 30 was the most outstanding in terms of grain yield and was stable across environments. This hybrid should be tested extensively in on-farm trials for consistency in performance and commercialized to combat malnutrition and food insecurity in SSA.

SELECTION OF CITATIONS
SEARCH DETAIL
...