Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Health ; 52(1): 15, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38282015

ABSTRACT

BACKGROUND: Among the medically important snakes in Nigeria, Echis ocellatus and Bitis arietans have the most lethal venom. These venoms were classified according to the presence of snake venom metalloproteinases (SVMPs), snake venom phospholipase A2 (PLA2s), and snake venom serine proteases (SVSPs). Toxicological analyzes were performed to understand the significance of different protein families in venoms. METHODS: Proteins were separated from venom using column chromatography. The skin and footpad of mice were used to determine hemorrhagic and edematogenic activities. Caprine blood plasma was used to test fibrinolytic activity in vitro. RESULTS: The results showed that, compared to the crude venom, the SVMP fraction induced hemorrhagic effects with a diameter of 26.00 ± 1.00 mm in E. ocellatus and 21.33 ± 1.52 mm in B. arietans. Both SVSP and SVMP had anticoagulant effects; however, the SVSP fraction had a stronger effect, with a longer anticoagulation time of 30.00 ± 3.00 min in E. ocellatus and 26.00 ± 2.00 min in B. arietans. These main venom toxins, SVMPs, SVSPs, and PLA2, were found to have edema-forming effects that were optimal at 2 h after envenomation. PLA2s had the highest edema-inducing activity, with onset 30 min after envenomation. CONCLUSIONS: Given the importance of SVMPs in altering the integrity of the membrane structure and impairing the blood coagulation system, an antivenom that can specifically neutralize its activity could inhibit the hemorrhage effects of the venoms.

2.
Biochem Biophys Rep ; 28: 101164, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34765747

ABSTRACT

Snakebite envenoming remains a neglected tropical disease which poses severe health hazard, especially for the rural inhabitants in Africa. In Nigeria, vipers are responsible for the highest number of deaths. Hydrophilic interaction liquid chromatography coupled with LC-MS/MS was used to analyze the crude venoms of Echis ocellatus (Carpet viper) and Bitis arietans (Puff adder) in order to understand their venom proteomic identities. Results obtained revealed that gel-free proteomic analysis of the crude venoms led to the identification of 85 and 79 proteins, respectively. Seventy-eight (78) proteins were common between the two snake species with a 91.8% similarity score. The identified proteins belong to 18 protein families in E. ocellatus and 14 protein families in B. arietans. Serine proteases (22.31%) and metalloproteinases (21.06%) were the dominant proteins in the venom of B. arietans; while metalloproteinases (34.84%), phospholipase A2s (21.19%) and serine proteases (15.50%) represent the major toxins in the E. ocellatus venom. Other protein families such as three-finger toxins and cysteine-rich venom proteins were detected in low proportions. This study provides an insight into the venom proteomic analysis of the two Nigerian viper species, which could be useful in identifying the toxin families to be neutralized in case of envenomation.

3.
Toxicon ; 197: 24-32, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33775665

ABSTRACT

Proteomics technologies enable a comprehensive study of complex proteins and their functions. The venom proteomes of three medically important Nigerian Elapidae snakes Naja haje, Naja katiensis and Naja nigricollis was studied using HILIC coupled with LC-MS/MS analysis. Results revealed a total of 57, 55, and 46 proteins in the venoms of N. haje, N. katiensis, and N. nigricollis, respectively, with molecular mass ranging between 5 and 185  kDa. These snakes have 38 common proteins in addition to 3 uncommon proteins: actiflagelin, cathelicidin, and cystatin identified in their venoms. The identified proteins belonged to 14 protein families in N. haje and N. katiensis, and 12 protein families in N. nigricollis. Of the total venom proteins, 3FTx was the most abundant protein family, constituting 52% in N. haje and N. katiensis, and 41% in N. nigricollis, followed by PLA2, constituting 37% in N. nigricollis, 26% in N. haje, and 24% in N. katiensis. Other protein families, including LAAO, CRISPs, VEGF, PLB, CVF, SVMP, SVH, AMP, PI, Globin, Actin, and C-type lectins, were also detected, although, at very low abundances. Quantification of the relative abundance of each protein revealed that alpha and beta fibrinogenase and PLA2, which constituted 18-26% of the total proteome, were the most abundant. The 3 uncommon proteins have no known function in snake venom. However, actiflagelin activates sperm motility; cystatin inhibits angiogenesis, while cathelicidin exerts antimicrobial effects. The three Nigerian Naja genus proteomes displayed 70% similarity in composition, which suggests the possibility of formulating antivenom that may cross-neutralise the venoms of cobra species found in Nigeria. These data provide insights into clinically relevant peptides/proteins present in the venoms of these snakes. Data are available via ProteomeXchange with identifier PXD024627.


Subject(s)
Naja , Proteomics , Animals , Chromatography, Liquid , Elapid Venoms/toxicity , Elapidae , Humans , Male , Naja haje , Nigeria , Snake Venoms , Sperm Motility , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...