Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Res ; 116(2): 393-405, 2020 02 01.
Article in English | MEDLINE | ID: mdl-30937452

ABSTRACT

AIMS: Cord blood-derived endothelial colony-forming cells (CB-ECFCs) are a defined progenitor population with established roles in vascular homeostasis and angiogenesis, which possess low immunogenicity and high potential for allogeneic therapy and are highly sensitive to regulation by reactive oxygen species (ROS). The aim of this study was to define the precise role of the major ROS-producing enzyme, NOX4 NADPH oxidase, in CB-ECFC vasoreparative function. METHODS AND RESULTS: In vitro CB-ECFC migration (scratch-wound assay) and tubulogenesis (tube length, branch number) was enhanced by phorbol 12-myristate 13-acetate (PMA)-induced superoxide in a NOX-dependent manner. CB-ECFCs highly-expressed NOX4, which was further induced by PMA, whilst NOX4 siRNA and plasmid overexpression reduced and potentiated in vitro function, respectively. Increased ROS generation in NOX4-overexpressing CB-ECFCs (DCF fluorescence, flow cytometry) was specifically reduced by superoxide dismutase, highlighting induction of ROS-specific signalling. Laser Doppler imaging of mouse ischaemic hindlimbs at 7 days indicated that NOX4-knockdown CB-ECFCs inhibited blood flow recovery, which was enhanced by NOX4-overexpressing CB-ECFCs. Tissue analysis at 14 days revealed consistent alterations in vascular density (lectin expression) and eNOS protein despite clearance of injected CB-ECFCs, suggesting NOX4-mediated modulation of host tissue. Indeed, proteome array analysis indicated that NOX4-knockdown CB-ECFCs largely suppressed tissue angiogenesis, whilst NOX4-overexpressing CB-ECFCs up-regulated a number of pro-angiogenic factors specifically-linked with eNOS signalling, in parallel with equivalent modulation of NOX-dependent ROS generation, suggesting that CB-ECFC NOX4 signalling may promote host vascular repair. CONCLUSION: Taken together, these findings indicate a key role for NOX4 in CB-ECFCs, thereby highlighting its potential as a target for enhancing their reparative function through therapeutic priming to support creation of a pro-reparative microenvironment and effective post-ischaemic revascularization.


Subject(s)
Endothelial Progenitor Cells/transplantation , Ischemia/surgery , Muscle, Skeletal/blood supply , NADPH Oxidase 4/metabolism , Neovascularization, Physiologic , Animals , Cell Movement , Cells, Cultured , Cellular Microenvironment , Disease Models, Animal , Endothelial Progenitor Cells/enzymology , Fetal Blood/cytology , Hindlimb , Humans , Ischemia/enzymology , Ischemia/genetics , Ischemia/physiopathology , Mice, Inbred NOD , NADPH Oxidase 4/genetics , Reactive Oxygen Species/metabolism , Recovery of Function , Signal Transduction
2.
Heart ; 104(4): 293-299, 2018 02.
Article in English | MEDLINE | ID: mdl-28954833

ABSTRACT

Despite being first described 45 years ago, the existence of a distinct diabetic cardiomyopathy remains controversial. Nonetheless, it is widely accepted that the diabetic heart undergoes characteristic structural and functional changes in the absence of ischaemia and hypertension, which are independently linked to heart failure progression and are likely to underlie enhanced susceptibility to stress. A prominent feature is marked collagen accumulation linked with inflammation and extensive extracellular matrix changes, which appears to be the main factor underlying cardiac stiffness and subclinical diastolic dysfunction, estimated to occur in as many as 75% of optimally controlled diabetics. Whether this characteristic remodelling phenotype is primarily driven by microvascular dysfunction or alterations in cardiomyocyte metabolism remains unclear. Although hyperglycaemia regulates multiple pathways in the diabetic heart, increased reactive oxygen species (ROS) generation is thought to represent a central mechanism underlying associated adverse remodelling. Indeed, experimental and clinical diabetes are linked with oxidative stress which plays a key role in cardiomyopathy, while key processes underlying diabetic cardiac remodelling, such as inflammation, angiogenesis, cardiomyocyte hypertrophy and apoptosis, fibrosis and contractile dysfunction, are redox sensitive. This review will explore the relative contributions of the major ROS sources (dysfunctional nitric oxide synthase, mitochondria, xanthine oxidase, nicotinamide adenine dinucleotide phosphate oxidases) in the diabetic heart and the potential for therapeutic targeting of ROS signalling using novel pharmacological and non-pharmacological approaches to modify specific aspects of the remodelling phenotype in order to prevent and/or delay heart failure development and progression.


Subject(s)
Cardiovascular Agents , Diabetic Cardiomyopathies , Reactive Oxygen Species/metabolism , Signal Transduction , Cardiovascular Agents/metabolism , Cardiovascular Agents/pharmacology , Diabetic Cardiomyopathies/complications , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Disease Progression , Drug Discovery , Heart Failure/etiology , Heart Failure/prevention & control , Humans , Signal Transduction/drug effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...