Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Article in English | MEDLINE | ID: mdl-35258450

ABSTRACT

Non-human primates harbour diverse microbiomes in their guts. As a part of the China Microbiome Initiatives, we cultivated and characterized the gut microbiome of cynomolgus monkeys (Macaca fascicularis). In this report, we communicate the characterization and taxonomy of eight bacterial strains that were obtained from faecal samples of captive cynomolgus monkeys. The results revealed that they represented eight novel bacterial species. The proposed names of the eight novel species are Alkaliphilus flagellatus (type strain MSJ-5T=CGMCC 1.45007T=KCTC 15974T), Butyricicoccus intestinisimiae MSJd-7T (MSJd-7T=CGMCC 1.45013T=KCTC 25112T), Clostridium mobile (MSJ-11T=CGMCC 1.45009T=KCTC 25065T), Clostridium simiarum (MSJ-4T=CGMCC 1.45006T=KCTC 15975T), Dysosmobacter acutus (MSJ-2T=CGMCC 1.32896T=KCTC 15976T), Paenibacillus brevis MSJ-6T (MSJ-6T=CGMCC 1.45008T=KCTC 15973T), Peptoniphilus ovalis (MSJ-1T=CGMCC 1.31770T=KCTC 15977T) and Tissierella simiarum (MSJ-40T=CGMCC 1.45012T=KCTC 25071T).


Subject(s)
Paenibacillus , Animals , Bacterial Typing Techniques , Base Composition , Clostridium , DNA, Bacterial/genetics , Fatty Acids/chemistry , Feces , Haplorhini , Phospholipids , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
mLife ; 1(2): 210-217, 2022 Jun.
Article in English | MEDLINE | ID: mdl-38817672

ABSTRACT

Nonhuman primates (NHPs) such as monkeys are the closest living relatives to humans and are the best available models for causative studies of human health and diseases. Gut microbiomes are intensively involved in host health. In this study, by large-scale cultivation of microbes from fecal samples of monkeys, we obtained previously uncultured bacterial species and constructed a Macaca fascicularis Gut Microbial Biobank (MfGMB). The MfGMB consisted of 250 strains that represent 97 species of 63 genera, 25 families, and 4 phyla. The information of the 250 strains and the genomes of 97 cultured species are publicly accessible. The MfGMB represented nearly 50% of core gut microbial compositions at the genus level and covered over 80% of the KO-based known gut microbiome functions of M. fascicularis. Data mining showed that the bacterial species in the MfGMB were prevalent not only in NHPs gut microbiomes but also in human gut microbiomes. This study will help the understanding and future investigations on how gut microbiomes interact with their mammalian hosts.

4.
Microbiome ; 9(1): 119, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34020714

ABSTRACT

BACKGROUND: In gut microbiome studies, the cultured gut microbial resource plays essential roles, such as helping to unravel gut microbial functions and host-microbe interactions. Although several major studies have been performed to elucidate the cultured human gut microbiota, up to 70% of the Unified Human Gastrointestinal Genome species have not been cultured to date. Large-scale gut microbial isolation and identification as well as availability to the public are imperative for gut microbial studies and further characterizing human gut microbial functions. RESULTS: In this study, we constructed a human Gut Microbial Biobank (hGMB; homepage: hgmb.nmdc.cn ) through the cultivation of 10,558 isolates from 31 sample mixtures of 239 fresh fecal samples from healthy Chinese volunteers, and deposited 1170 strains representing 400 different species in culture collections of the International Depository Authority for long-term preservation and public access worldwide. Following the rules of the International Code of Nomenclature of Prokaryotes, 102 new species were characterized and denominated, while 28 new genera and 3 new families were proposed. hGMB represented over 80% of the common and dominant human gut microbial genera and species characterized from global human gut 16S rRNA gene amplicon data (n = 11,647) and cultured 24 "most-wanted" and "medium priority" taxa proposed by the Human Microbiome Project. We in total sequenced 115 genomes representing 102 novel taxa and 13 previously known species. Further in silico analysis revealed that the newly sequenced hGMB genomes represented 22 previously uncultured species in the Unified Human Gastrointestinal Genome (UHGG) and contributed 24 representatives of potentially "dark taxa" that had not been discovered by UHGG. The nonredundant gene catalogs generated from the hGMB genomes covered over 50% of the functionally known genes (KEGG orthologs) in the largest global human gut gene catalogs and approximately 10% of the "most wanted" functionally unknown proteins in the FUnkFams database. CONCLUSIONS: A publicly accessible human Gut Microbial Biobank (hGMB) was established that contained 1170 strains and represents 400 human gut microbial species. hGMB expands the gut microbial resources and genomic repository by adding 102 novel species, 28 new genera, 3 new families, and 115 new genomes of human gut microbes. Video abstract.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bacteria/genetics , Biological Specimen Banks , Darkness , Gastrointestinal Microbiome/genetics , Humans , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
5.
Sci Total Environ ; 615: 462-468, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28988082

ABSTRACT

In this study, the efficiency of the nonylphenol polyethoxylates (NPEOs)-degrading bacterium Sphingomonas sp. strain Y2 was evaluated, which was immobilized by a novel system composed of polydopamine (PD)-coated Fe3O4 iron nanoparticles (IONPs). The PD-IONPs, with a distinct core-shell structure, relatively uniform size, and high saturation magnetization, were prepared for Y2 immobilization. The performance of Y2 was unaffected by this novel immobilization method, exhibiting 79.5% and 99.9% of NPEOs (500ppm) degradation efficiency at day 1 and 2, respectively. Furthermore, separation and recycling were more readily achieved for immobilized cells as compared to free cells. Immobilized cells retained over 70% of the original degradation activity after 6cycles of utilization. These results suggest that Y2-PD-IONPs can be potentially used for NPEOs-contaminated wastewater bioremediation. CAPSULE: Immobilization of Sphingomonas sp. Y2 by functionalized PD-IONPs with easy separation, recycling utilization and high efficiency.

6.
Sci Total Environ ; 590-591: 343-351, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28279530

ABSTRACT

We successfully isolated Rhodococcus sp. D-1, an efficient carbendazim-degrading bacterium that degraded 98.20% carbendazim (200ppm) within 5days. Carbendazim was first processed into 2-aminobenzimidazole, converted to 2-hydroxybenzimidazole, and then further mineralized by subsequent processing. After genomic analysis, we hypothesized that D-1 may express a new kind of enzyme capable of hydrolyzing carbendazim. In addition, the effect of the biodegradable biosurfactant rhamnolipid on the rate and extent of carbendazim degradation was assessed in batch analyses. Notably, rhamnolipid affected carbendazim biodegradation in a concentration-dependent manner with maximum biodegradation efficiency at 50ppm (at the critical micelle concentration, CMC) (97.33% degradation within 2days), whereas 150ppm (3 CMC) rhamnolipid inhibited initial degradation (0.01%, 99.26% degradation within 2 and 5days, respectively). Both carbendazim emulsification and favorable changes in cell surface characteristics likely facilitated its direct uptake and subsequent biodegradation. Moreover, rhamnolipid facilitated carbendazim detoxification. Collectively, these results offer preliminary guidelines for the biological removal of carbendazim from the environment.


Subject(s)
Benzimidazoles/metabolism , Carbamates/metabolism , Glycolipids/chemistry , Rhodococcus/metabolism , Surface-Active Agents/chemistry , Biodegradation, Environmental
7.
Environ Pollut ; 220(Pt A): 95-104, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27638455

ABSTRACT

Nonylphenol (NP), ubiquitously detected as the degradation product of nonionic surfactants nonylphenol polyethoxylates, has been reported as an endocrine disrupter. However, most pure microorganisms can degrade only limited species of NP with low degradation efficiencies. To establish a microbial consortium that can effectively degrade different forms of NP, in this study, we isolated a facultative microbial consortium NP-M2 and characterized the biodegradation of NP by it. NP-M2 could degrade 75.61% and 89.75% of 1000 mg/L NP within 48 h and 8 days, respectively; an efficiency higher than that of any other consortium or pure microorganism reported so far. The addition of yeast extract promoted the biodegradation more significantly than that of glucose. Moreover, surface-active compounds secreted into the extracellular environment were hypothesized to promote high-efficiency metabolism of NP. The detoxification of NP by this consortium was determined. The degradation pathway was hypothesized to be initiated by oxidization of the benzene ring, followed by step-wise side-chain biodegradation. The bacterial composition of NP-M2 was determined using 16S rDNA library, and the consortium was found to mainly comprise members of the Sphingomonas, Pseudomonas, Alicycliphilus, and Acidovorax genera, with the former two accounting for 86.86% of the consortium. The high degradation efficiency of NP-M2 indicated that it could be a promising candidate for NP bioremediation in situ.


Subject(s)
Biodegradation, Environmental , Comamonadaceae/metabolism , Microbial Consortia , Phenols/metabolism , Pseudomonas/metabolism , Sphingomonas/metabolism , Biodegradation, Environmental/drug effects , Comamonadaceae/genetics , Glucose/pharmacology , Microbial Consortia/genetics , Plant Extracts/pharmacology , Pseudomonas/genetics , Sphingomonas/genetics , Yeasts/chemistry
8.
Environ Sci Pollut Res Int ; 23(12): 12019-29, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26961533

ABSTRACT

Nonylphenol polyethoxylates (NPEOs), although banned for decades, are still widely used in manufactories and thus affect human lives. In this study, a highly efficient NPEO-degrading bacterium, Sphingomonas sp. Y2, was isolated from sewage sludge by enrichment culture. Strain Y2 ensured the complete removal of NPEO in 48 h and degraded 99.2 % NPEO (1,000 mg L(-1)) within 30 h at a specific growth rate of 0.73 h(-1) in minimum salt medium. To date, this degradation efficiency is the highest reported for NPEO metabolism by a pure bacterium under this condition. Furthermore, the application of this bacterium to wastewater treatment demonstrated that it metabolized 98.5 % NPEO (1,000 mg L(-1)) within 5 days with a specific growth rate of 2.03 day(-1). The degradation intermediates, identified as nonylphenol, short-chain NPEOs and short-chain nonylphenol polyethoxycarboxylates by high-performance liquid chromatography and gas chromatography-mass spectrometry, indicated the sequential exo-cleavage of the EO chain. Additionally, the enzymes involved in the biodegradation were inducible rather than constitutive. Considering that strain Y2 exhibits prominent biodegradation advantages in industrial wastewater treatment, it might serve as a promising potential candidate for in situ bioremediation of contamination by NPEOs and other structurally similar compounds.


Subject(s)
Phenols/metabolism , Polyethylene Glycols/metabolism , Sphingomonas/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Sphingomonas/isolation & purification , Waste Disposal, Fluid/methods , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...