Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Open Life Sci ; 19(1): 20220728, 2024.
Article in English | MEDLINE | ID: mdl-38681733

ABSTRACT

The aim of this study was to investigate the frequency distribution of the cytochrome P450 (CYP450) enzymes, CYP2D6 and CYP2C19, and the form of tamoxifen metabolisation in premenopausal patients with breast cancer in the Han and Uygur ethnic groups of Xinjiang to guide rational clinical drug use. A total of 125 Han patients and 121 Uygur patients with premenopausal hormone-receptor-positive breast cancer treated at the Xinjiang Uygur Autonomous Region Cancer Hospital between 1 June 2011 and 1 December 2013 were selected. The common mutation sites in CYP450 were analysed using TaqMan® minor groove binder technology. Genetic testing was performed to determine other metabolic types of tamoxifen, and the genotypes and metabolic types were compared using a Chi-squared test. Between the Han and Uygur groups, there were significant differences in the frequencies of the CYP2D6 (*10/*10) and CYP2C19 (*1/*1) genotypes, with P-values of 0.002 and 0.015, respectively. Genotypes of CYP2D6 (*1/*1), CYP2D6 (*1/*5), CYP2D6 (*5/*5), CYP2D6 (*5/*10) and CYP2C19 (*3/*3) were expressed in the two patient groups, and the difference was not statistically significant (P > 0.05). In the Han patients, the proportions of extensive, intermediate and poor metabolisers of tamoxifen were 72, 24 and 4%, respectively, whereas those in the Uygur patients were 76.9, 17.4 and 5.7%, respectively, with no significant difference (P > 0.05). In conclusion, There were partial differences in the CYP2D6 and CYP2C19 gene polymorphisms of CYP450 between the Han and Uygur patients with premenopausal breast cancer, but there was no significant difference between the CYP2D6 and CYP2C19 phenotypes. Further research is needed to determine the relationship between the enzyme genetic differences of CYP450 and the pharmacokinetics and efficacy of tamoxifen. Although there were some differences in genotypes, these did not result in differences in the predicted tamoxifen metabolisation phenotype between the Han and Uygur patients with breast cancer. Therefore, the doses should be adjusted according to the individual genotype data.

2.
Thorac Cancer ; 14(24): 2504-2514, 2023 08.
Article in English | MEDLINE | ID: mdl-37429610

ABSTRACT

BACKGROUND: Many long noncoding RNAs (lncRNAs) are the key regulators for cancer progression, including breast cancer (BC). RUSC1 antisense 1 (RUSC1-AS1) has been found to be highly expressed in BC, but its role and potential molecular mechanism in BC remain to be further elucidated. METHODS: Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was utilized to measure RUSC1-AS1, microRNA (miR)-326 and X-ray repair cross-complementing group 5 (XRCC5) expression. Cell proliferation, metastasis, cell cycle, apoptosis and angiogenesis were determined by cell counting kit-8, colony formation, transwell, flow cytometry and tube formation assays. Protein expression was detected by western blot analysis. The targeted relationship between miR-326 and RUSC1-AS1 or XRCC5 was validated using dual-luciferase reporter assay and RIP assay. Xenograft models were constructed to uncover the effect of RUSC1-AS1 on BC tumorigenesis. RESULTS: RUSC1-AS1 was upregulated in BC, and its downregulation suppressed BC proliferation, metastasis, cell cycle, angiogenesis, and tumor growth. MiR-326 was confirmed to be sponged by RUSC1-AS1, and its inhibitor reversed the regulation of RUSC1-AS1 silencing on BC progression. XRCC5 could be targeted by miR-326. Overexpression of XRCC5 reversed the inhibitory impacts of miR-326 on BC progression. CONCLUSION: RUSC1-AS1 could serve as a sponge of miR-326 to promote BC progression by targeting XRCC5, suggesting that RUSC1-AS1 might be a target for BC treatment.


Subject(s)
Breast Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Female , Breast Neoplasms/pathology , MicroRNAs/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Cycle , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Ku Autoantigen/genetics , Ku Autoantigen/metabolism , Adaptor Proteins, Signal Transducing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...