Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cancer ; 14(8): 1417-1426, 2023.
Article in English | MEDLINE | ID: mdl-37283796

ABSTRACT

Background: Long non-coding RNA VIM-antisense 1 (VIM-AS1) has been reported that it is involved in the progression of several cancers. However, the aberrant expression profile, clinical significance, and biological function of VIM-AS1in lung adenocarcinoma (LUAD) have not been fully described. We tend to perform a comprehensive analysis to identify the clinical prognostic value of VIM-AS1 for LUAD patients and explore its potential molecular mechanisms in LUAD development. Methods: The expression features of VIM-AS1 in LUAD were identified based on Cancer Genome Atlas database (TCGA) and genotypic tissue expression (GTEx). The LUAD patients' lung tissues were collected to testify above expression features. Survival analysis and COX regression analysis were performed to evaluate the prognostic value of VIM-AS1 in LUAD patients. Then Correlation analysis was performed to filter VIM-AS1 co-expression genes, and their molecular functions were constructed. Furtherly, we constructed the lung carcinoma A549 cell line with VIM-AS1 overexpression to test its effect on cell function. Results: VIM-AS1 expression levels were significantly downregulated in LUAD tissues. VIM-AS1 with low expression is significantly associated with short overall survival (OS), disease-specific survival (DSS), progress free interval (PFI), late T pathological stage, and lymph node metastasis for LUAD patients. The low expression level of VIM-AS1 was an independent risk factor for poor prognosis for LUAD patients. The biological functions of co-expressed genes indicated that VIM-AS1 regulating the apoptosis process may be the potential mechanism for LUAD. Specifically, we testified VIM-AS1 can promote apoptosis in A549 cells. Conclusion: VIM-AS1 was significantly downregulated in LUAD tissues, and it can be a promising prognostic index for LUAD development. VIM-AS1 regulating apoptotic effects may play important roles in LUAD progression.

2.
Mol Oncol ; 17(2): 365-377, 2023 02.
Article in English | MEDLINE | ID: mdl-36221911

ABSTRACT

The improvement of treatment for patients with 'driver-gene-negative' lung adenocarcinoma (LUAD) remains a critical problem to be solved. We aimed to explore the role of methylation of N6 adenosine (m6A)-related long noncoding RNA (lncRNA) in stratifying 'driver-gene-negative' LUAD risk. Patients negative for mutations in EGFR, KRAS, BRAF, HER2, MET, ALK, RET, and ROS1 were identified as 'driver-gene-negative' cases. RNA sequencing was performed in 46 paired tumors and adjacent normal tissues from patients with 'driver-gene-negative' LUAD. Twenty-three m6A regulators and relevant lncRNAs were identified using Pearson's correlation analysis. K-means cluster analysis was used to stratify patients, and a prognostic nomogram was developed. The CIBERSORT and pRRophetic algorithms were employed to quantify the immune microenvironment and chemosensitivity. We identified two clusters highly consistent with the prognosis based on their unique expression profiles for 46 m6AlncRNAs. A risk model constructed from nine m6A lncRNAs could stratify patients into high- and low-risk groups with promising predictive power (C-index = 0.824), and the risk score was an independent prognostic factor. The clusters and risk models were closely related to immune characteristics and chemosensitivity. Additional pan-cancer analysis using the nine m6AlncRNAs showed that the expression of DIO3 opposite strand upstream RNA (DIO3OS) is closely related to the immune/stromal score and tumor stemness in a variety of cancers. Our results show that m6AlncRNAs are a reliable prognostic tool and can aid treatment decision-making in 'driver-gene-negative' LUAD. DIO3OS is associated with the development of various cancers and has potential clinical applications.


Subject(s)
Adenocarcinoma , Lung Neoplasms , RNA, Long Noncoding , Humans , Methylation , RNA, Long Noncoding/genetics , Protein-Tyrosine Kinases , Proto-Oncogene Proteins , Adenosine , Lung , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...