Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer ; 22(1): 7, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36627698

ABSTRACT

Gastric cancer (GC) is one of the most common tumors worldwide and the leading cause of tumor-related mortality. Endoscopy and serological tumor marker testing are currently the main methods of GC screening, and treatment relies on surgical resection or chemotherapy. However, traditional examination and treatment methods are more harmful to patients and less sensitive and accurate. A minimally invasive method to respond to GC early screening, prognosis monitoring, treatment efficacy, and drug resistance situations is urgently needed. As a result, liquid biopsy techniques have received much attention in the clinical application of GC. The non-invasive liquid biopsy technique requires fewer samples, is reproducible, and can guide individualized patient treatment by monitoring patients' molecular-level changes in real-time. In this review, we introduced the clinical applications of circulating tumor cells, circulating free DNA, circulating tumor DNA, non-coding RNAs, exosomes, and proteins, which are the primary markers in liquid biopsy technology in GC. We also discuss the current limitations and future trends of liquid biopsy technology as applied to early clinical biopsy technology.


Subject(s)
Neoplastic Cells, Circulating , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Liquid Biopsy/methods , Biopsy/methods , Prognosis , Neoplastic Cells, Circulating/pathology , DNA, Neoplasm , Biomarkers, Tumor
2.
ACS Omega ; 7(38): 33830-33836, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36188314

ABSTRACT

Ureaplasma urealyticum is a common genital mycoplasma in men and women, which can cause reproductive tract infection and infertility, and is also related to adverse pregnancy outcomes and neonatal diseases. Pathogen culture and polymerase chain reaction (PCR) are the main methods for the diagnosis of U. urealyticum. However, pathogen culture takes too long, and PCR requires professional personnel and sophisticated instruments. Here, we report a simple, convenient, sensitive, and specific detection method, which combines catalytic hairpin assembly with a lateral flow immunoassay strip. Only a water bath and a fluorescence reader are needed to detect the results in 30 min. We can realize the point-of-care testing of U. urealyticum by this method. To verify this method, we selected 10 clinical samples for testing, and the test results were exactly the same as the clinical report.

SELECTION OF CITATIONS
SEARCH DETAIL
...