Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Oral Health ; 22(1): 624, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36544118

ABSTRACT

BACKGROUND: Numerous dental age estimation methods have been devised and practised for decades. Among these, the London Atlas and Willems methods were two of the most frequently adopted, however dependent on atlantes or tables. A new estimation method less reliant on external measurement could be efficient and economical. AIM: This study aimed to evaluate the utility and applicability of the dental age estimation methods of London Atlas, Willems, and a new quick method that subtracts the number of developing teeth from the universal root mature age of 16 years in one of the lower quadrants reported in this work among Chinese Uyghur children. METHODS: A comparative cross-sectional study was conducted. Subjects enrolled in the study were screened according to preset inclusion and exclusion criteria. The observer then obtained the dental age from the subjects' panoramic radiographs based on the estimated rules of the London Atlas, Willems, and a new quick method. Paired t-test was used to compare the accuracy and precision of the above three estimation methods. Independent-sample t-test was used to find the difference between gender. RESULTS: Totally, 831 radiographs entered the analyses of this study. Among the three methods evaluated, the Willems method, in particular, showed a distinct underestimated tendency. The mean error of the dental age predicted by the London Atlas, the Willems method, and the quick method was 0.06 ± 1.13 years, 0.44 ± 1.14 years, and 0.30 ± 0.63 years, respectively. The mean absolute error was 0.86 ± 0.75 years according to the London Atlas, 1.17 ± 0.89 years under the Willems method, and 0.70 ± 0.54 years under our quick method. No significant difference was found between the chronological age and dental age using the London Atlas, generally for the 10 to 15 years group (p > 0.05), but our quick method for the 15-16 years children (p < 0.05) and Willems method (p < 0.001). CONCLUSION: The London Atlas outperformed the Willems method with better accuracy and precision among 10-15 years Chinese Uyghur children. Our new quick method may be comparable to the London Atlas for children aged 10-14 and potentially become a more straightforward dental age prediction instrument.


Subject(s)
Age Determination by Teeth , Tooth , Humans , Child , London , Cross-Sectional Studies , East Asian People , Age Determination by Teeth/methods , Radiography, Panoramic
2.
Mater Today Bio ; 16: 100432, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36204216

ABSTRACT

Cell-free biomaterials-inducing endogenous in situ multi-tissue regeneration is very challenging and applying advanced immunomodulatory biomaterials can be an effective strategy to overcome it. In-depth knowledge of the immunopathophysiological mechanisms should be acquired before applying such an immunomodulation strategy. In this study, we implanted different immunoregulatory cell-free biomaterials into periodontal multi-tissue defects and showed that the outcome of multi-tissue regeneration is closely regulated by the immune reaction. The underlying immunopathophysiological processes, including the blood clotting response and fibrinoid necrosis, innate and adaptive immune response, local and systemic immune reaction, growth factors release, and stem cells recruitment, were revealed. The implantation of biomaterials with anti-inflammatory properties could direct the immunopathophysiological process and make it more favorable for in situ multi-tissue regeneration, ultimately enabling the regeneration of the periodontal ligament, the acellular cementum matrix, and the alveolar bone in the periodontium. These findings further confirm the effectiveness of immunomodulatory based strategy and the unveiling of their immunopathophysiological processes could provide some favorable theoretical bases for the development of advanced cell-free immunomodulatory multi-tissue regenerative biomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...