Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 246: 112770, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37579650

ABSTRACT

In this study, the effect of photobiomodulation (PBM) treatment using 630 nm light emitting diode (LED) array (continuous wave type, 10 mW power) on tonsil-derived mesenchymal stem cells (TMSCs) and its interaction with RAW 264.7 macrophage cells via co-culture in vitro were investigated. PBM treatment was used as a priming method for TMSCs to improve therapeutic efficacy. TMSCs were subjected to multi-dose PBM treatments before co-culture with M1 activated (1 µg/mL lipopolysaccharide, LPS) macrophage cells with total energy doses of 0, 15, 30, and 60 J. Irradiation set at 15 J (1500 s treatment time) was performed once, twice for 30 J, and four times for 60 J in an incubator kept at 37 °C and 5% CO2. No significant anti-inflammatory response was observed for TMSCs co-cultured with macrophage cells without PBM. But PBM treatment of TMSCs with 630 nm LED array at 30 J reduced expression of inducible nitric oxide synthase, iNOS (M1) and increased expression of Arginase-1, Arg-1 (M2) phenotype macrophage markers. Anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1RA) gene expression also increased significantly. Based on the results, PBM priming of TMSCs supports M2 macrophage polarization. PBM can be used to improve the therapeutic efficacy of TMSCs for potential applications in oral mucositis and wound healing.


Subject(s)
Mesenchymal Stem Cells , Palatine Tonsil , Mice , Animals , Palatine Tonsil/metabolism , Macrophages , Cytokines/metabolism , RAW 264.7 Cells
2.
J Biophotonics ; 16(11): e202300043, 2023 11.
Article in English | MEDLINE | ID: mdl-37483112

ABSTRACT

This study investigated photobiomodulation (PBM) effects in Sonic hedgehog (Shh) signaling as a potential approach to taste preservation and regeneration. Primary taste cell (TC) cultures were treated with Shh antagonist vismodegib and irradiated using a continuous wave type 630 nm light-emitting diode (10 mW/cm2 ) array, with single or multiple doses of 30 J/cm2 to determine dose inducing significant upregulation effect. Shh, Ptch, Smo, and Gli1 were significantly upregulated at 120 J/cm2 , used as the minimum dose in vivo. Vismodegib was administered via daily oral gavage for 21 days (30 mg/kg) to induce Shh inhibition in the tongue of rat animal models resulting in taste bud damage and taste dysfunction. PBM treatment using a 630 nm laser (3 W/cm2 ) at a radiant exposure of 120 J/cm2 (24 J/cm2 × 5) successfully upregulated the Shh protein expression, regenerated taste buds, and recovered taste function.


Subject(s)
Taste Buds , Taste , Animals , Rats , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Up-Regulation , Taste Buds/metabolism
3.
Carbohydr Polym ; 288: 119380, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35450642

ABSTRACT

Lavage or irrigation has been instilled in surgical practice for wound clearance and surgical site infection prevention during and after surgery. Herein, we developed a new irrigation solution using trimethyl chitosan (TMC), a quaternized chitosan derivative. The TMC-saline irrigation solution developed in the study possesses highly effective bactericidal properties with hemostatic and anti-adhesion properties. The anti-adhesion property of TMC was investigated in relation to inflammatory cytokine response and wound healing. TMC-saline irrigation solution showed reduced pro-inflammatory cytokine protein and gene expressions relevant in the cascade of wound healing and cytokine-related orchestration of postoperative adhesion formation. Further development of this multifunctional TMC-saline irrigation solution can be beneficial for surgical applications and postoperative wound management.


Subject(s)
Chitosan , Anti-Bacterial Agents , Chitosan/pharmacology , Cytokines , Physical Phenomena , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...