Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Heliyon ; 10(5): e26828, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463821

ABSTRACT

An autonomous, power-assisted Turtlebot is presented in this paper in order to enhance human mobility. The turtlebot moves from its initial position to its final position at a predetermined speed and acceleration. We propose an intelligent navigation system that relies solely on individual instructions. When there is no individual present, the Turtlebot remains stationary. Turtlebot utilizes a rotating Kinect sensor in order to perceive its path. Various angles were examined in order to demonstrate the effectiveness of the system in experiments conducted on a U-shaped experimental pathway. The Turtlebot was used as an experimental device during these trials. Based on the U-shaped path, deviations from different angles were measured to evaluate its performance. SLAM (Simultaneous Localization and Mapping) experiments were also explored. We divided the SLAM problem into components and implemented the Kalman filter on the experimental path to address it. The Kalman filter focused on localization and mapping challenges, utilizing mathematical processes considering both the system's knowledge and the measurement tool. This approach allowed us to achieve the most accurate system state estimation possible. The significance of this work extends beyond the immediate application, as it lays the groundwork for advancements in wheelchair navigation research by Dynamic Control. The experiments conducted on a U-shaped pathway not only validate the efficacy of our algorithm but also provide valuable insights into the intricacies of navigating in both forward and reverse directions. These insights are pivotal for refining the navigation algorithm, ultimately contributing to the development of more robust and user-friendly systems for individuals with mobility challenges. The data used for this purpose included actuator input, vehicle location, robot movement sensors, and sensor readings representing the world state. The study provides a strong foundation for future wheelchair navigation research by Dynamic Control. Consequently, we found that navigating the Turtlebot in the reverse direction resulted in a 5%-6% increase in diversion compared to forward navigation, providing valuable insight into further improvement of the navigation algorithm.

2.
Big Data ; 11(6): 437-451, 2023 12.
Article in English | MEDLINE | ID: mdl-37219960

ABSTRACT

In the recent health care era, biomedical documents play a crucial role, and they contain much evidence-based documentation associated with many stakeholders data. Protecting those confidential research documents is more difficult and effective, and a significant process in the medical-based research domain. Those bio-documentation related to health care and other relevant community-valued data are suggested by medical professionals and processed. Many traditional security mechanisms such as akteonline and Health Insurance Portability and Accountability Act (HIPAA) are used to protect the biomedical documents as they consider the problem of non-repudiation and data integrity related to the retrieval and storage of documents. Thus, there is a need for a comprehensive framework that improves protection in terms of cost and response time related to biomedical documents. In this research work, blockchain-based biomedical document protection framework (BBDPF) is proposed, which includes blockchain-based biomedical data protection (BBDP) and blockchain-based biomedical data retrieval (BBDR) algorithms. BBDP and BBDR algorithms provide consistency on the data to prevent data modification and interception of confidential data with proper data validation. Both the algorithms have strong cryptographic mechanisms to withstand post-quantum security risks, ensuring the integrity of biomedical document retrieval and non-deny of data retrieval transactions. In the performance analysis, Ethereum blockchain infrastructure is deployed BBDPF and smart contracts using Solidity language. In the performance analysis, request time and searching time are determined based on the number of request to ensure data integrity, non-repudiation, and smart contracts for the proposed hybrid model as it gets increased gradually. A modified prototype is built with a web-based interface to prove the concept and evaluate the proposed framework. The experimental results revealed that the proposed framework renders data integrity, non-repudiation, and support for smart contracts with Query Notary Service, MedRec, MedShare, and Medlock.


Subject(s)
Blockchain , United States , Privacy , Computer Security , Algorithms , Delivery of Health Care
3.
Inform Med Unlocked ; 32: 101059, 2022.
Article in English | MEDLINE | ID: mdl-36033909

ABSTRACT

COVID-19 detection from medical imaging is a difficult challenge that has piqued the interest of experts worldwide. Chest X-rays and computed tomography (CT) scanning are the essential imaging modalities for diagnosing COVID-19. All researchers focus their efforts on developing viable methods and rapid treatment procedures for this pandemic. Fast and accurate automated detection approaches have been devised to alleviate the need for medical professionals. Deep Learning (DL) technologies have successfully recognized COVID-19 situations. This paper proposes a developed set of nine deep learning models for diagnosing COVID-19 based on transfer learning and implementation in a novel architecture (SEL-COVIDNET). We include a global average pooling layer, flattening, and two dense layers that are fully connected. The model's effectiveness is evaluated using balanced and unbalanced COVID-19 radiography datasets. After that, our model's performance is analyzed using six evaluation measures: accuracy, sensitivity, specificity, precision, F1-score, and Matthew's correlation coefficient (MCC). Experiments demonstrated that the proposed SEL-COVIDNET with tuned DenseNet121, InceptionResNetV2, and MobileNetV3Large models outperformed the results of comparative SOTA for multi-class classification (COVID-19 vs. No-finding vs. Pneumonia) in terms of accuracy (98.52%), specificity (98.5%), sensitivity (98.5%), precision (98.7%), F1-score (98.7%), and MCC (97.5%). For the COVID-19 vs. No-finding classification, our method had an accuracy of 99.77%, a specificity of 99.85%, a sensitivity of 99.85%, a precision of 99.55%, an F1-score of 99.7%, and an MCC of 99.4%. The proposed model offers an accurate approach for detecting COVID-19 patients, which aids in the containment of the COVID-19 pandemic.

4.
Procedia Comput Sci ; 201: 383-389, 2022.
Article in English | MEDLINE | ID: mdl-35502239

ABSTRACT

Covid-19 has been stated as a worldwide outbreak of pandemic disease and crisis. The Covid-19 pandemic has dramatically affected the teaching and learning experience at universities and schools. In response, governments and higher education institutions around the world put significant efforts to ensure that students continue to obtain the best possible level of education and learning outcomes. As such effective evaluation of e-learning is essential in order to ensure that students get proper learning and education especially during the current circumstances of Covid-19. Our study was carried out to determine the main elements and factors related to students' satisfaction and quality of e-learning during the Covid-19 pandemic era based on various aspects and dimensions of e-learning. The main findings of the study indicated that students satisfaction and evaluation of the e-learning experience during the pandemic were not promising. Therefore, higher education institutions should reconsider their efforts and approaches to improve the quality of e-learning and the learning outcomes achieved. For example, IT infrastructure, Internet access, and particularly network connectivity could be improved to support fully online courses. Such elements need to be addressed because of the prevalence of the current Covid-19 pandemic which perhaps will lead to e-learning occurring for a long time. With the move to e-learning, the size of the class (the number of students in each class) has been increased leading to other significant challenges related to communication and participation in the class and reducing the possible interactivity for each student. Furthermore, it has been also observed that new students need relevant training on IT and e-learning applications to ensure sufficient use and utilization of these applications in their e-learning journey.

5.
Environ Technol ; : 1-15, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35129073

ABSTRACT

Global demand and pressure on natural resources is increasing, which is greater on the availability of pure and safe drinking water. The use of new-age technologies including Smart sensors, embedded devices, and Cloud computing can help deliver efficient and safe management for provisioning drinking water for consumers and irrigation for agriculture. The management actions combined with real-time data gathering, monitoring, and alerting with proactive actions, prevent issues from occurring. This research presents a secure and smart research framework to enhance the existing irrigation system. This involves a low-budget irrigation model that can provide automated control and requirements as per the season, climate by using smart device sensors and Cloud communications. The authors presented four unique algorithms and water management processing rules. This also includes alerting scenarios for device and component failures and water leakage by automatically switching to alternative mode and sending alert messages about the faults to resolve the operational failures.The objective of this research is to identify new-age technologies for providing efficient and effective farming methods and investigate Smart IoT-based water management. The highlights of this research are to investigate IoT water management systems using algorithms for irrigation farming, for which this research presents a secure and smart research framework. This involves a low-budget irrigation model that provides automated control and requirements as per the season, climate by using smart device sensors and Cloud communications. Alerts for device and component failures and water leakage are also in-built for switching to alternative mode to resolve the operational failures.

6.
Softw Pract Exp ; 52(4): 824-840, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34230701

ABSTRACT

The Covid-19 pandemic has emerged as one of the most disquieting worldwide public health emergencies of the 21st century and has thrown into sharp relief, among other factors, the dire need for robust forecasting techniques for disease detection, alleviation as well as prevention. Forecasting has been one of the most powerful statistical methods employed the world over in various disciplines for detecting and analyzing trends and predicting future outcomes based on which timely and mitigating actions can be undertaken. To that end, several statistical methods and machine learning techniques have been harnessed depending upon the analysis desired and the availability of data. Historically speaking, most predictions thus arrived at have been short term and country-specific in nature. In this work, multimodel machine learning technique is called EAMA for forecasting Covid-19 related parameters in the long-term both within India and on a global scale have been proposed. This proposed EAMA hybrid model is well-suited to predictions based on past and present data. For this study, two datasets from the Ministry of Health & Family Welfare of India and Worldometers, respectively, have been exploited. Using these two datasets, long-term data predictions for both India and the world have been outlined, and observed that predicted data being very similar to real-time values. The experiment also conducted for statewise predictions of India and the countrywise predictions across the world and it has been included in the Appendix.

SELECTION OF CITATIONS
SEARCH DETAIL
...