Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Domest Anim ; 58(5): 679-687, 2023 May.
Article in English | MEDLINE | ID: mdl-36880652

ABSTRACT

Cattle-yak, the hybrid offspring of yak (Bos grunniens) and cattle (Bos taurus), serves as a unique model to dissect the molecular mechanisms underlying reproductive isolation. While female cattle-yaks are fertile, the males are completely sterile due to spermatogenic arrest at the meiosis stage and massive germ cell apoptosis. Interestingly, meiotic defects are partially rescued in the testes of backcrossed offspring. The genetic basis of meiotic defects in male cattle-yak remains unclear. Structure-specific endonuclease subunit (SLX4) participates in meiotic double-strand break (DSB) formation in mice, and its deletion results in defects in spermatogenesis. In the present study, we examined the expression patterns of SLX4 in the testes of yak, cattle-yak, and backcrossed offspring to investigate its potential roles in hybrid sterility. The results showed that the relative abundances of SLX4 mRNA and protein were significantly reduced in the testis of cattle-yak. The results of immunohistochemistry revealed that SLX4 was predominately expressed in spermatogonia and spermatocytes. Chromosome spreading experiments showed that SLX4 was significantly decreased in the pachytene spermatocytes of cattle-yak compared with yak and backcrossed offspring. These findings suggest that SLX4 expression was dysregulated in the testis of cattle-yak, potentially resulting in the failure of crossover formation and collapses of meiosis in hybrid males.


Subject(s)
Cattle Diseases , Infertility, Male , Animals , Cattle , Female , Male , Mice , Cattle Diseases/metabolism , Infertility, Male/veterinary , Spermatocytes , Spermatogenesis/genetics , Spermatogonia , Testis/metabolism , Recombinases/metabolism
2.
Int J Mol Sci ; 18(4)2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28420163

ABSTRACT

(1) Background: The binding sites of melatonin, as a multifunctional molecule, have been identified in human, porcine, and bovine samples. However, the binding sites and mechanisms of melatonin have not been reported in sheep; (2) Methods: Cumulus-oocyte complexes (COCs) were cultured in TCM-199 supplemented with melatonin at concentrations of 0, 10-3, 10-5, 10-7, 10-9, and 10-11 M. Melatonin receptors (MT1 and MT2) were evaluated via immunofluorescence and Western blot. The effects of melatonin on cumulus cell expansion, nuclear maturation, embryo development, and related gene (GDF9, DNMT1, PTX3, HAS2, and EGFR) expression were investigated. The level of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were evaluated in oocytes and cumulus, respectively; (3) Results: Both MT1 and MT2 were expressed in oocytes, cumulus cells, and granulosa cells. Melatonin with a concentration of 10-7 M significantly enhanced the rates of nuclear maturation, cumulus cells expansion, cleavage, and blastocyst. Melatonin enhanced the expression of BMP15 in oocytes and of PTX3, HAS2, and EGFR in cumulus cells. Melatonin decreased the cAMP level of oocytes but enhanced the cGMP level in oocytes and cumulus cells; (4) Conclusion: The higher presence of MT1 in GV cumulus cells and the beneficial effects of melatonin indicated that its roles in regulating sheep oocyte maturation may be mediated mainly by the MT1 receptor.


Subject(s)
Cell Differentiation/drug effects , Melatonin/metabolism , Melatonin/pharmacology , Oocytes/cytology , Oocytes/metabolism , Receptors, Melatonin/metabolism , Animals , Cumulus Cells/drug effects , Cumulus Cells/metabolism , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Embryonic Development/genetics , Female , Gene Expression , Gene Expression Regulation, Developmental , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...