Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998742

ABSTRACT

The condensation of water vapor plays a crucial role in various applications, including combating water scarcity. In this study, by employing molecular dynamics simulations, we delved into the impact of graphene coatings on water vapor condensation on copper surfaces. Unique to this work was the exploration of various levels of graphene coverage and distribution, a facet largely unexplored in prior investigations. The findings demonstrated a notable increase in the rate of water vapor condensation and heat transfer performance as the graphene coverage was reduced. Using graphene coverages of 84%, 68%, and 52%, the numbers of condensed water molecules were 664, 735, and 880 molecules/ns, respectively. One of the most important findings was that when using the same graphene coverage of 68%, the rate of water vapor condensation and heat transfer performance increased as the graphene coating became more distributed. The overall performance of the water condensation correlated well with the energy and vibrational interaction between the graphene and the copper. This phenomenon suggests how a hybrid surface can enhance the nucleation and growth of a droplet, which might be beneficial for tailoring graphene-coated copper surfaces for applications demanding efficient water vapor condensation.

2.
Materials (Basel) ; 16(22)2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38005108

ABSTRACT

In this work, a comprehensive shrinkage and tensile strength characterization of unsaturated polyester (UPE-8340) and vinyl ester (VE-922) epoxy matrices and composites reinforced with multiwall carbon nanotubes (MWCNTs) was conducted. The aspect ratio of UPE and VE with methyl ethyl ketone peroxide (MEKP) was kept at 1:16.6; however, the weight of the MWCNTs was varied from 0.03 to 0.3 gm for the doping of the reinforced nanocomposites. Using a dumbbell-shaped mold, samples of the epoxy matrix without MWCNTs and with reinforced UPE/MWCNT and VE/MWCNT nanocomposites were made. The samples were then cured in a typical ambient chamber with air and an inner gas (carbon dioxide). The effect of the MWCNTs on UPE- and VE-reinforced composites was studied by observing the curing kinetics, shrinkage, and tensile properties, as well as the surface free energy of each reinforced sample in confined saline water. The CO2 curing results reveal that the absence of O2 shows a significantly lower shrinkage rate and higher tensile strength and flexural modulus of UPE- and VE-reinforced nanocomposite samples compared with air-cured reinforced nanocomposites. The construction that was air- and CO2-cured produced results in the shape of a dumbbell, and a flawless surface was seen. The results also show that smaller quantities of MWCNTs made the UPET- and VE-reinforced nanocomposites more stable when they were absorbed and adsorbed in concentrated salt water. Perhaps, compared to air-cured nanocomposites, CO2-cured UPE and VE nanocomposites were better at reducing shrinkage, having important mechanical properties, absorbing water, and being resistant to seawater.

3.
Sci Rep ; 13(1): 836, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36646741

ABSTRACT

The oxygenated hydro diesel (OHD) is prepared from hydrogen peroxide (H2O2), acetone, and seaweed polysaccharide. A long-term study was carried out on the OHD fuel blend stability for about a year at various temperatures. The long-term stability shows very stable properties, no easy emulsion breaking, and a long storage period. The neat diesel and blend fuel performance test was conducted at various engine speeds, 1700-3100 RPM the diesel blend with 5 wt.% and 10 wt. % of H2O2 revealed the best fraction for reducing smoke and emissions. The blend contains 15 wt.% H2O2, revealing a significant reduction in exhaust temperature without considering the engine's performance. Moreover, the performance of the OHD also revealed an economizing rate, decreasing environmental pollution and prolonging the engine's service life. The diesel engine performance and environmental evaluation leading to exhaust emissions characterization ([Formula: see text], [Formula: see text], and others). Based on the results, the various concentrations of H2O2 are an effective method for reducing the emission of diesel engines. Decreased CO, SO2, unburned hydrocarbons, and NO2 were also observed as percentages of H2O2. Due to increased oxygen content, water content and cetane number, the number of unburned hydrocarbons from diesel fuel decreased with the addition of H2O2. Therefore, the OHD blend can significantly curtail the exhaust emission of conventional diesel fuel, which will help reduce the harmful greenhouse gas emissions from diesel fuel sources.

4.
Materials (Basel) ; 15(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35591304

ABSTRACT

This work investigated low shrinkage curing techniques and characterization of unsaturated polyester (UPE-8340) and vinyl ester (VE-922) reinforced composite. The reinforced polymeric composite was composed using various amounts (0.1 vol.% to 0.5 vol.%) of methyl ethyl ketone peroxide (MEKP) and the proportion of UPE and VE (5 vol.%) was kept fixed throughout the study. The epoxy matrix was formed using a 3D printed acrylonitrile butadiene styrene (ABS) dumbbell shape mold and the specimen was cured in the presence of air and an inner gas (carbon dioxide) using a customized ambient closed chamber system. The influence of MEKP on UPE and VE reinforce composites was studied by investigating curing kinetics, shrinkage, tensile properties, contact angle, and thermal stability. The CO2-cured results show a significant lower shrinkage rate and higher tensile strength and flexural modulus of UPE and VE reinforced composite articles compared with air-cured reinforced composite. These macro-scale results correlate with the air-cured structure, an un-banded smooth surface was observed, and it was found that the lowest amount of MEKP revealed significant improvement in the contact angle of UPET and VE reinforced composites.

6.
ACS Omega ; 7(13): 10877-10889, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35415368

ABSTRACT

The selection of suitable hydrate formers and their respective gas composition for high hydrate formation, driving force is critical to achieve high water recovery and metal removal efficiency in the hydrate-based desalination process. This study presents a feasibility analysis on the possible driving force and subcooling temperatures for the binary and ternary mixtures of methane, carbon dioxide, and propane for hydrates-based desalination process. The driving force and subcooling for the gas systems was evaluated by predicting their hydrate formation phase boundary conditions in 2 wt % NaCl systems at pressure ranges from 2.0-4.0 MPa and temperatures of 1-4 °C using modified Peng-Robinson equation of state in the PVTSim software package. The results suggest that the driving force of CH4 + C3H8 and CO2 + C3H8 binary systems are similar to their ternary systems. Thus, the use of binary systems is preferable and simpler than the ternary systems. For binary gas composition, CO2 + C3H8 (70:30) exhibited a higher subcooling temperature of 8.07 °C and driving force of 1.49 MPa in the presence of 2 wt % aqueous solution. In the case of the ternary system, CH4-C3H8-CO2 gas composition of 10:80:10 provided a good subcooling temperature of 12.86 °C and driving force of 1.657 MPa for hydrate formation. The results favor CO2-C3H8 as a preferred hydrate former for hydrate-based desalination. This is attributed to the formation of sII structure and it constitutes 136 water molecules which signifies a huge potential of producing more quantities of treated water.

7.
Membranes (Basel) ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36676823

ABSTRACT

Integrated wastewater treatment processes are accepted as the best option for sustainable and unrestricted onsite water reuse. In this study, moving bed biofilm reactor (MBBR), membrane bioreactor (MBR), and direct contact membrane distillation (DCMD) treatment steps were integrated successively to obtain the combined advantages of these processes for industrial wastewater treatment. The MBBR step acts as the first step in the biological treatment and also mitigates foulant load on the MBR. Similarly, MBR acts as the second step in the biological treatment and serves as a pretreatment prior to the DCMD step. The latter acts as a final treatment to produce high-quality water. A laboratory scale integrated MBBR/MBR/DCMD experimental system was used for assessing the treatment efficiency of primary treated (PTIWW) and secondary treated (STIWW) industrial wastewater in terms of permeate water flux, effluent quality, and membrane fouling. The removal efficiency of total dissolved solids (TDS) and effluent permeate flux of the three-step process (MBBR/MBR/DCMD) were better than the two-step (MBR/DCMD) process. In the three-step process, the average removal efficiency of TDS was 99.85% and 98.16% when treating STIWW and PTIWW, respectively. While in the case of the two-step process, the average removal efficiency of TDS was 93.83% when treating STIWW. Similar trends were observed for effluent permeate flux values which were found, in the case of the three-step process, 62.6% higher than the two-step process, when treating STIWW in both cases. Moreover, the comparison of the quality of the effluents obtained with the analysed configurations with that obtained by Jeddah Industrial Wastewater Treatment Plant proved the higher performance of the proposed membrane processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...