Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Stroke Cerebrovasc Dis ; 33(8): 107824, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880366

ABSTRACT

BACKGROUND: Ischemic injury is a common mechanism in both ischemic stroke (IS) and acute coronary syndrome (ACS). Matrix metalloproteinase 9 (MMP-9), an endopeptidase that degrades extracellular matrix, is important in the pathogenesis of IS. The purpose of this study is to evaluate the association between the SNP rs17576 in MMP-9 gene with (1) the risk and severity of acute ischemic stroke in Saudi Arab individuals with recent acute coronary syndrome, and (2) the risk of acute coronary syndrome in Saudi Arab individuals without ischemic stroke. METHODS: A case control study of 200 IS patients, 520 ACS patients (without IS), and 500 aged-matched healthy controls were genotyped to detect the MMP-9 polymorphism rs17156. RESULTS: Our study demonstrated a non-significant difference in the genotype and allele frequencies of the MMP9 rs17576 polymorphism between the patients with IS and patients with ACS without IS (P = 0.31 for the GA genotype, 0.25 for the AA genotype and P = 0.20 for the A allele). AA genotype was found to be statistically significant between IS and control groups; [OR=1.84, 95 % CI (1.08-3.14), p =0.015]. A allele showed a significant difference between the two groups [OR=1.28, 95 % CI (1.00-1.64), p =0.028]. By comparing ACS without IS and controls, AA genotype was significant [OR=1.46, 95 % CI (1.01-2.12), p =0.029]. Stratification by NIHSS score revealed higher mortality and early neurologic deterioration in IS patients with NIHSS score ≥ 16 (p < 0.001, 0.044 respectively). CONCLUSION: We deduced the lack of association either with allele or genotype frequencies (p>0.05) between the IS cases and the cases of ACS without IS. In contrast there was a significant association of mutant genotype AA between either the IS group or ACS (without IS) group, and the control group. In addition, different rs17576 genotypes were not associated with raised mortality or a tendency to develop early neurologic deterioration.

2.
Hum Genomics ; 17(1): 60, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37420260

ABSTRACT

This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Male , Humans , Female , Fragile X Syndrome/drug therapy , Fragile X Syndrome/epidemiology , Fragile X Syndrome/genetics , Autism Spectrum Disorder/genetics , DNA Methylation/genetics , Mosaicism , Biological Variation, Population , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism
3.
Cureus ; 15(3): e36293, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36937130

ABSTRACT

BACKGROUND: The PSMB8 and PSMB9 immunoproteasome genes are essential in cell processes, such as decisions on cell survival or death, the cell cycle, and cellular differentiation. Because recent evidence has demonstrated an immunological role for proteasomes in various malignancies, including urothelial bladder carcinoma (UBC), we evaluated single nucleotide polymorphisms (SNPs) in PSMB9 and PSMB8. We determined any associations between these SNPs and susceptibility to UBC in the Saudi community. METHODS: Samples of genomic DNA were taken from buccal cells of 111 patients with UBC and 78 healthy controls. TaqMan Real-Time PCR was used to determine genotype distributions and allele frequencies for the PSMB9 rs17587 G>A and PSMB8 rs2071543 G>T SNPs. We used SNPStats (https://www.snpstats.net) to choose each SNP's best interactive inheritance model. RESULTS: The PSMB9 rs17587 SNP was associated with the risk of UBC (odds ratio [OR] = 5.21, P < 0.0001). In contrast, the PSMB8 rs2071543 SNP showed no association with UBC risk (OR = 1.13, P = 0.7871). In terms of genotypic distribution, the rs17587 G>A SNP was more frequent in UBC cases than controls in both the dominant (OR = 7.5; 95% confidence interval, 3.7-15.1; P = 0.0051) and recessive (OR = 17.11, 95% confidence interval 5.1-57.4; P = 0.0026) models. Genotypic distribution of the PSMB8 rs2071543 G>T SNP was not significantly different between cases and controls in any interactive inheritance models (P > 0.05). CONCLUSION: These results suggest a potential role for PSMB9 as a biomarker for increased UBC risk. Discovering more genetic variants within immunoproteasome genes related to antigen presentation could help further our understanding of this risk.

5.
CJC Open ; 4(12): 1031-1035, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36562013

ABSTRACT

Left ventricular hypertrophy is a common entity with a broad differential diagnosis. We present a case of a middle-aged woman with left ventricular hypertrophy and neuropathy caused by a rare transthyretin variant in the absence of a family history or regional reports of hereditary transthyretin amyloidosis. This report outlines the diagnosis and management of patients with a mixed phenotype of hereditary transthyretin amyloidosis and enriches clinical data supporting the pathogenicity of a rare variant of transthyretin.


L'hypertrophie ventriculaire gauche est une entité clinique fréquente pour laquelle le diagnostic différentiel est vaste. Nous décrivons le cas d'une femme d'âge moyen présentant une hypertrophie ventriculaire gauche et une neuropathie, causées par un variant rare de la transthyrétine en l'absence d'antécédents familiaux ou de cas régionaux déclarés d'amylose héréditaire à transthyrétine. Le présent article décrit le diagnostic et la prise en charge des patients qui présentent un phénotype mixte d'amylose héréditaire à transthyrétine, et il alimente le bassin de données cliniques sur la pathogénicité d'un variant rare de la transthyrétine.

6.
Hum Genomics ; 16(1): 22, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35854334

ABSTRACT

This review discusses the epidemiology, pathophysiology, genetic etiology, and management of phenylketonuria (PKU). PKU, an autosomal recessive disease, is an inborn error of phenylalanine (Phe) metabolism caused by pathogenic variants in the phenylalanine hydroxylase (PAH) gene. The prevalence of PKU varies widely among ethnicities and geographic regions, affecting approximately 1 in 24,000 individuals worldwide. Deficiency in the PAH enzyme or, in rare cases, the cofactor tetrahydrobiopterin results in high blood Phe concentrations, causing brain dysfunction. Untreated PKU, also known as PAH deficiency, results in severe and irreversible intellectual disability, epilepsy, behavioral disorders, and clinical features such as acquired microcephaly, seizures, psychological signs, and generalized hypopigmentation of skin (including hair and eyes). Severe phenotypes are classic PKU, and less severe forms of PAH deficiency are moderate PKU, mild PKU, mild hyperphenylalaninaemia (HPA), or benign HPA. Early diagnosis and intervention must start shortly after birth to prevent major cognitive and neurological effects. Dietary treatment, including natural protein restriction and Phe-free supplements, must be used to maintain blood Phe concentrations of 120-360 µmol/L throughout the life span. Additional treatments include the casein glycomacropeptide (GMP), which contains very limited aromatic amino acids and may improve immunological function, and large neutral amino acid (LNAA) supplementation to prevent plasma Phe transport into the brain. The synthetic BH4 analog, sapropterin hydrochloride (i.e., Kuvan®, BioMarin), is another potential treatment that activates residual PAH, thus decreasing Phe concentrations in the blood of PKU patients. Moreover, daily subcutaneous injection of pegylated Phe ammonia-lyase (i.e., pegvaliase; PALYNZIQ®, BioMarin) has promised gene therapy in recent clinical trials, and mRNA approaches are also being studied.


Subject(s)
Phenylalanine Hydroxylase , Phenylketonurias , Humans , Phenylalanine/metabolism , Phenylalanine/therapeutic use , Phenylalanine Hydroxylase/genetics , Phenylalanine Hydroxylase/metabolism , Phenylalanine Hydroxylase/therapeutic use , Phenylketonurias/genetics , Phenylketonurias/therapy
7.
Clin Case Rep ; 9(5): e04079, 2021 May.
Article in English | MEDLINE | ID: mdl-34094554

ABSTRACT

This report describes two patients with INPPL1- related skeletal dysplasia diagnosed prenatally. A literature review is conducted to find out if high-lethality is associated with particular pathogenic variants in INPPL1 gene. Prediction of lethality in the prenatal setting has an impact on perinatal management. Some frameshift variants in INPLL1 gene are uniquely observed in lethal cases; however, more patients are needed to confirm the correlation.

8.
Int J Gen Med ; 14: 10031-10044, 2021.
Article in English | MEDLINE | ID: mdl-34984025

ABSTRACT

BACKGROUND: The antigen processing 1 (TAP1) and proteasome 20S subunit beta 9 (PSMB9) genes are associated with strong susceptibility to many autoimmune diseases. Here, we explored whether TAP1/PSMB9 genetic variants, individually or combined, affected susceptibility to the complex, autoimmune-based skin disorder vitiligo. METHODS: Samples of genomic DNA from buccal cells of 172 patients with vitiligo and 129 healthy controls were analyzed using TaqMan™ genotyping assays for the TAP1 rs1135216 (A>G) and PSMB9 rs17587 (A>G) single nucleotide polymorphisms (SNPs). SNPStats software (https://www.snpstats.net) was utilized to choose the best interactive inheritance mode for selected SNPs. RESULTS: The genotype frequencies for the TAP1 rs1135216 and PSMB9 rs17587 SNPs were in Hardy-Weinberg equilibrium for cases (P= 0.11 and P= 0.10, respectively) but not for controls (P< 0.05). The TAP1 rs1135216 (D637G) and PSMB9 rs17587 (R60H) SNPs increased the risk of vitiligo four-fold and two-fold, respectively (odds ratio [OR]= 4.6; 95% confidence interval [CI], 3.2-6.5; P< 0.0001 and OR= 2.2; 95% CI, 1.5-3.1; P< 0.0001). The recessive model (G/G-D/G versus D/D) and the codominant model (R/R versus R/H) were the best models of inheritance for the rs113526 and rs17587 SNPs, respectively (OR= 16.4; 95% CI, 2.0-138; P= 0.0006 and OR= 1.7; 95% CI, 0.3-1.8; P= 0.013). Vulgaris, focal vulgaris, and acryl/acrofacial were the most common vitiligo subtypes in our sample (51%, 21%, and 19%, respectively). Heterozygous rs113526 (637D/G) and rs17587 (60R/H) were the most common genotypes in most vitiligo subtypes. The heterozygous 637D/G genotype and the 637G variant allele were significantly more common in patients with active disease than in patients with stable disease (P= 0.000052 and P= 0.0063, respectively). CONCLUSION: Our findings suggest a crucial role for TAP1 rs1135216 and PSMB9 rs17587 in the risk and progression of vitiligo in the Saudi community. Genomic analyses are needed to identify more candidate genes and more genetic variants associated with vitiligo.

9.
JIMD Rep ; 51(1): 30-44, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32071837

ABSTRACT

BACKGROUND: Morquio-B disease (MBD) is a distinct GLB1-related dysostosis multiplex involving the trabecular parts of long bones and spine, presenting a mild phenocopy of GALNS-related Morquio-A disease. METHODS: We analyzed 63 (n = 62 published) cases with MBD to describe their clinical, biochemical and genetic features. RESULTS: Forty-one of 51 cases with informative clinical data had pure MBD including progressive growth impairment, kyphoscoliosis, coxa/genua valga, joint laxity, platyspondyly, odontoid hypoplasia. Ten of 51 had MBD plus neuronopathic manifestations including intellectual/developmental/speech delay, spasticity, ataxia dystonia. Corneal clouding, cardiac valve pathology, hepatosplenomegaly, spinal cord compression were infrequent and atlantooccipital dislocation, cardiomyopathy and cherry red spot were never reported. Urinary glycosaminoglycan and oligosaccharide excretion was consistently abnormal. Keratan sulphate-derived oligosaccharides were only detected using LC-MS/MS-based methods. Residual ß-galactosidase activities measured against synthetic substrates were 0%-17%.Among 28 GLB1 variants, W273 L (34/94 alleles) and T500A (11/94 alleles) occurred most frequently. W273L was invariably associated with pure MBD. Pure MBD also was reported in a case homozygous for R201H, and in the majority of cases carrying the T500A variant. Homozygous Y333C and G438E were associated with MBD plus neuronopathic manifestations. T82M, R201H, and H281Y, observed in seven alleles, previously have been found sensitive to experimental chaperones. CONCLUSION: Data provide a basis for future systematic collection of clinical, biochemical, morphologic, and genetic data of this ultra-rare condition.

10.
Genomics ; 107(1): 24-32, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26688439

ABSTRACT

Familial hypercholesterolemia (FH) is an autosomal dominant disease, predominantly caused by variants in the low-density lipoprotein (LDL) receptor gene (LDLR). Herein, we describe genetic analysis of severely affected homozygous FH patients who were mostly resistant to statin therapy and were managed on an apheresis program. We identified a recurrent frameshift mutation p.(G676Afs*33) in exon 14 of the LDLR gene in 9 probands and their relatives in an apparently unrelated Saudi families. We also describe a three dimensional homology model of the LDL receptor protein (LDLR) structure and examine the consequence of the frameshift mutation p.(G676Afs*33), as this could affect the LDLR structure in a region involved in dimer formation, and protein stability. This finding of a recurrent mutation causing FH in the Saudi population could serve to develop a rapid genetic screening procedure for FH, and the 3D-structure analysis of the mutant LDLR, may provide tools to develop a mechanistic model of the LDLR function.


Subject(s)
Frameshift Mutation , Hyperlipoproteinemia Type II/genetics , Receptors, LDL/chemistry , Adolescent , Adult , Amino Acid Sequence , Child , Child, Preschool , Exons , Female , Humans , Male , Molecular Sequence Data , Pedigree , Receptors, LDL/genetics
11.
AJP Rep ; 5(2): e116-20, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26495167

ABSTRACT

Background Congenital hydrocephalus is a common and often disabling disorder. Various syndromic forms of hydrocephalus have been reported in the Palestinian population including Walker-Warburg syndrome (WWS), Carpenter syndrome, and Meckel syndrome. Aim In this report we discuss the antenatal diagnosis of congenital hydrocephalus in three related Palestinian families. Method Single nucleotide polymorphism (SNP) array was performed prenatally for the third affected fetus. Results A diagnosis of WWS was found and molecular testing revealed a known pathogenic mutation in the POMT2 gene. An affected fetus from the other family was diagnosed and tested postnatally in light of this finding. Testing of another affected stillborn offspring was performed and revealed the same mutation. Conclusions Here, we show that the use of prenatal SNP array testing can be helpful in elucidating the etiology of congenital hydrocephalus and in guiding appropriate perinatal care. Also, testing for this specific POMT2 mutation should be considered in cases of prenatally detected hydrocephalus in Palestinian families.

12.
Hum Genet ; 134(8): 815-22, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25957586

ABSTRACT

Cutis Marmorata Telangiectatica Congenita (CMTC) is a congenital localized or generalized vascular anomaly, usually sporadic in occurrence. It can be associated with other cutaneous or systemic manifestations. About 300 cases have been reported. The molecular etiology remains largely unknown. The main purpose of this study is to delineate the molecular basis for a syndromic CMTC phenotype in a consanguineous Saudi family. Clinical phenotyping including detailed neurological imaging, followed by autozygosity mapping and trio whole exome sequencing (WES) are also studied. We have identified a homozygous truncating mutation in ARL6IP6 as the likely cause of a syndromic form of CMTC associated with major dysmorphism, developmental delay, transient ischemic attacks and cerebral vascular malformations. This gene was previously implicated by genome wide association study (GWAS) as a susceptibility locus to ischemic stroke in young adults. We identify ARL6IP6 as a novel candidate gene for a syndromic form of CMTC. This suggests that ischemic stroke or transient ischemic attacks (TIA) may represent, at least in some cases, the mild end of a phenotypic spectrum that has at its severe end autosomal recessive CMTC. This finding contributes to a growing appreciation of the continuum of Mendelian and common complex diseases.


Subject(s)
Brain Ischemia/genetics , Central Nervous System Vascular Malformations/genetics , Genetic Loci , Genetic Predisposition to Disease , Heat-Shock Proteins/genetics , Mutation , Skin Diseases, Vascular/genetics , Stroke/genetics , Telangiectasis/congenital , Adult , Child, Preschool , Female , Genome-Wide Association Study , Humans , Livedo Reticularis , Male , Syndrome , Telangiectasis/genetics
14.
J Child Neurol ; 29(6): 860-4, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23625088

ABSTRACT

Classical lissencephaly may be associated with cerebellar hypoplasia and when significant cerebellar abnormalities occur, defects in proteins encoded by TUBA1A, RELN, and very-low-density lipoprotein receptor (VLDLR) genes have been reported. We present a neonate with a severe neurologic phenotype associated with hypotonia, oropharyngeal incoordination that required a gastric tube for feeding, intractable epilepsy, and congenital cataracts. Her brain magnetic resonance imaging (MRI) showed classical lissencephaly, ventriculomegaly, absent corpus callosum, globular and vertical hippocampi, and severe cerebellar and brainstem hypoplasia. She died at 6 weeks of age. No specific molecular diagnosis was made. This likely represents a previously undescribed genetic lissencephaly syndrome.


Subject(s)
Brain Stem/pathology , Cataract/complications , Cerebellum/abnormalities , Lissencephaly/complications , Nervous System Malformations/complications , Developmental Disabilities/complications , Female , Humans , Infant, Newborn , Magnetic Resonance Imaging , Reelin Protein
15.
Hum Genome Var ; 1: 14021, 2014.
Article in English | MEDLINE | ID: mdl-27081511

ABSTRACT

Familial hypercholesterolemia (FH) is an autosomal dominant disease predominantly caused by a mutation in the low-density lipoprotein receptor (LDLR) gene. Here, we describe two severely affected FH patients who were resistant to statin therapy and were managed on an apheresis program. We identified a novel duplication variant c.1332dup, p.(D445*) at exon 9 and a known silent variant c.1413A>G, p.(=), rs5930, NM_001195798.1 at exon 10 of the LDLR gene in both patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...