Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; 85(12): 2580-2585, 2020 12.
Article in English | MEDLINE | ID: mdl-33155772

ABSTRACT

The quality of ion-selective membranes determines the efficiency of Vanadium Flow Batteries (VFBs), and alternatives to expensive Nafion™ materials are actively being searched for. One of the membrane architecture approaches is to imitate the Nafion™ structure with two separate phases: a conductive sulfonated polymer and an inner matrix. We introduce a new composite material based on sulfonated styrene polymerized inside the pores of a stretched PTFE matrix. Variation of polystyrene content and a sulfonation degree allowed to obtain membranes with IEC from to 0.96 to 1.84 mmol/g. Balanced vanadium permeability (ca. 5.5 ⋅ 10-6  cm2 /min) and proton conductivity (ca. 50 mS/cm) were achieved for the material with 21-23 % polystyrene content and a sulfonation degree up to 94 %. Membranes showed stable cycling with 81 % energy efficiency in a single-cell VFB. This work contributes to the existing knowledge of Nafion alternatives by providing a cheap and scalable method of membrane production.

2.
Chempluschem ; 85(8): 1919-1927, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32856795

ABSTRACT

A great deal of research has been dedicated to improving the performance of vanadium redox flow battery (VRFB). In this work, we propose the design of a cell for testing membrane electrode assembly of VRFB, which enables the optimization of the flow field, conditions of charge-discharge tests, and the nature of components (electrodes, membrane) with minimal time and material expenses. The essence of the proposed cell is that the system of channels distributing the electrolyte is made by cutting shaped holes in the sheets of graphite foil (GF). This manner allows easy modification of the flow field configurations. Polarization curves for serpentine, interdigitated, and flow-through systems were measured according to procedures used in such studies. Cell with GF plates being tested with vanadium-sulfuric acid electrolyte, outperforms the cell with conventional graphite plates with the same parameters of the flow field. It demonstrates 734 mW cm-2 of peak power density at SOC 50 and 84.3 % of energy efficiency at 84.5 % of electrolyte utilization under galvanostatic charge/discharge cycling with 75 mA cm-2 .

SELECTION OF CITATIONS
SEARCH DETAIL
...