Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Res ; 29(9): 577-581, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34955698

ABSTRACT

The use of polydiacetylene (PDA) vesicles in sensing systems are wide-spread due to the interesting optical properties of this stimuli-responsive material; however, agglutination based sensing with PDA have been relatively underutilized. To demonstrate the means for rapidly generating an agglutination probe based on peptide-displaying polydiacetylene vesicles, we implement here the use of a biotin mimetic peptide functionalized to a diacetylene amphiphile for proof-of-concept detection of a multivalent target, specifically streptavidin. Tuning of the vesicle composition revealed a distinct limit in the surface density of peptide amphiphile that could be displayed for this particular peptide sequence. A wide operational detection range was demonstrated, and the result also revealed an effective agglutination response of the PDA-based probe to streptavidin suggesting possible use of future formulations in profiling other multivalent targets.

2.
Macromol Res ; 29(7): 449-452, 2021 Jul.
Article in English | MEDLINE | ID: mdl-35321256

ABSTRACT

Polydiacetylene (PDA) vesicles provide useful stimuli-responsive behavior as well as by the modular structure afford a means for the design of sensing and delivery systems with tunable target specificity. To reduce inherent non-specific interaction with either anionic or cationic formulations of polydiacetylene vesicles, we explored the use of various lengths of poly(ethylene glycol) (PEG) amphiphiles for integration and polymerization within PDA vesicles. Our results established that as little as 1% of polyethylene glycol amphiphile integration into anionic vesicles was sufficient to significantly reduce non-specific association with mammalian cells. Similarly integrating a low percent of PEG amphiphile content within cationic vesicles could also significantly reduce non-specific cell association, and moreover reduced cytotoxicity. These results may be prove useful in augmenting PDA vesicles formulations for reduced non-specific interaction which is of particularly interest to enhancing selectivity in vesicles designed with integrated targeting moieties for sensing and drug delivery applications.

3.
Biosensors (Basel) ; 10(10)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987658

ABSTRACT

Polydiacetylene vesicles of various compositions were assembled using a two-part mixture of 10,12-pentacosadiynoic acid (PCDA) and ethylenedioxy-bis-ethylamine (EDEA)-labeled PCDA in order to control surface charge and stability within a desired pH range. Investigation of the interaction of the vesicles with mammalian cells as a function of surface charge was carried out and identified a clear correlation in cell-vesicle association and corresponding cell death for vesicles with positive surface charge. The binding behavior of the vesicles was found to be tunable by regulating the proportion of anionic PCDA relative to cationic PCDA-EDEA content within vesicles as to control the surface charge as a function of pH. Association of vesicles with cells thus depended on the corresponding charge of the vesicles and cell surface. The prospect of this work may serve as a step toward future vesicle designs to allow triggered uptake of vesicles locally within low pH tumor microenvironments.


Subject(s)
Biosensing Techniques , Polyacetylene Polymer , Animals , Humans , Mammals , Phospholipids , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...