Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 12329, 2016 07 29.
Article in English | MEDLINE | ID: mdl-27470974

ABSTRACT

Diffuse invasion of the surrounding brain parenchyma is a major obstacle in the treatment of gliomas with various therapeutics, including anti-angiogenic agents. Here we identify the epi-/genetic and microenvironmental downregulation of ephrinB2 as a crucial step that promotes tumour invasion by abrogation of repulsive signals. We demonstrate that ephrinB2 is downregulated in human gliomas as a consequence of promoter hypermethylation and gene deletion. Consistently, genetic deletion of ephrinB2 in a murine high-grade glioma model increases invasion. Importantly, ephrinB2 gene silencing is complemented by a hypoxia-induced transcriptional repression. Mechanistically, hypoxia-inducible factor (HIF)-1α induces the EMT repressor ZEB2, which directly downregulates ephrinB2 through promoter binding to enhance tumour invasiveness. This mechanism is activated following anti-angiogenic treatment of gliomas and is efficiently blocked by disrupting ZEB2 activity. Taken together, our results identify ZEB2 as an attractive therapeutic target to inhibit tumour invasion and counteract tumour resistance mechanisms induced by anti-angiogenic treatment strategies.


Subject(s)
Drug Resistance, Neoplasm , Ephrin-B2/genetics , Glioma/genetics , Glioma/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Zinc Finger E-box Binding Homeobox 2/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Cell Hypoxia/genetics , Down-Regulation/genetics , Drug Resistance, Neoplasm/genetics , Ephrin-B2/metabolism , Gene Expression Regulation, Neoplastic , Glioma/blood supply , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Up-Regulation/genetics , Xenograft Model Antitumor Assays , Zinc Finger E-box Binding Homeobox 2/genetics
2.
Cell Death Dis ; 3: e394, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-23034329

ABSTRACT

Autophagy is a highly regulated program of self-degradation of the cytosolic constituents that has key roles during early development and in adult cell growth and homeostasis. To investigate the role of autophagy in otic neurogenesis, we studied the expression of autophagy genes in early stages of chicken (Gallus gallus) inner ear development and the consequences of inhibiting the autophagic pathway in organotypic cultures of explanted chicken otic vesicles (OVs). Here we show the expression of autophagy-related genes (Atg) Beclin-1 (Atg6), Atg5 and LC3B (Atg8) in the otocyst and the presence of autophagic vesicles by using transmission electron microscopy in the otic neurogenic zone. The inhibition of the transcription of LC3B by using antisense morpholinos and of class III phosphatidylinositol 3-kinase with 3-methyladenine causes an aberrant morphology of the OV with accumulation of apoptotic cells. Moreover, inhibition of autophagy provokes the misregulation of the cell cycle in the otic epithelium, impaired neurogenesis and poor axonal outgrowth. Finally, our results indicate that autophagy provides the energy required for the clearing of neuroepithelial dying cells and suggest that it is required for the migration of otic neuronal precursors. Taken together, our results show for the first time that autophagy is an active and essential process during early inner ear development.


Subject(s)
Autophagy , Neurogenesis , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Cells, Cultured , Chickens , Ear, Inner/growth & development , Ear, Inner/metabolism , Embryo, Nonmammalian/cytology , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Morpholinos/pharmacology , Neuroepithelial Cells/cytology , Neuroepithelial Cells/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...