Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 37(3): 109844, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686340

ABSTRACT

Converting checkpoint inhibitor (CPI)-resistant individuals to being responsive requires identifying suppressive mechanisms. We identify TREM2+ tumor-associated macrophages (TAMs) as being correlated with exhausted CD8+ tumor-infiltrating lymphocytes (TILs) in mouse syngeneic tumor models and human solid tumors of multiple histological types. Fc domain-enhanced anti-TREM2 monoclonal antibody (mAb) therapy promotes anti-tumor immunity by elimination and modulation of TAM populations, which leads to enhanced CD8+ TIL infiltration and effector function. TREM2+ TAMs are most enriched in individuals with ovarian cancer, where TREM2 expression corresponds to disease grade accompanied by worse recurrence-free survival. In an aggressive orthotopic ovarian cancer model, anti-TREM2 mAb therapy drives potent anti-tumor immunity. These results highlight TREM2 as a highly attractive target for immunotherapy modulation in individuals who are refractory to CPI therapy and likely have a TAM-rich tumor microenvironment.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Membrane Glycoproteins/antagonists & inhibitors , Neoplasms/drug therapy , Receptors, Immunologic/antagonists & inhibitors , Tumor-Associated Macrophages/drug effects , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Coculture Techniques , Drug Resistance, Neoplasm , Female , HEK293 Cells , Humans , Lymphocyte Activation/drug effects , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Membrane Glycoproteins/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Tumor Cells, Cultured , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism
2.
Cell ; 177(3): 556-571.e16, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30955881

ABSTRACT

Differentiation of proinflammatory CD4+ conventional T cells (Tconv) is critical for productive antitumor responses yet their elicitation remains poorly understood. We comprehensively characterized myeloid cells in tumor draining lymph nodes (tdLN) of mice and identified two subsets of conventional type-2 dendritic cells (cDC2) that traffic from tumor to tdLN and present tumor-derived antigens to CD4+ Tconv, but then fail to support antitumor CD4+ Tconv differentiation. Regulatory T cell (Treg) depletion enhanced their capacity to elicit strong CD4+ Tconv responses and ensuing antitumor protection. Analogous cDC2 populations were identified in patients, and as in mice, their abundance relative to Treg predicts protective ICOS+ PD-1lo CD4+ Tconv phenotypes and survival. Further, in melanoma patients with low Treg abundance, intratumoral cDC2 density alone correlates with abundant CD4+ Tconv and with responsiveness to anti-PD-1 therapy. Together, this highlights a pathway that restrains cDC2 and whose reversal enhances CD4+ Tconv abundance and controls tumor growth.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Animals , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Line, Tumor , Cytokines/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Diphtheria Toxin/immunology , Forkhead Transcription Factors/metabolism , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphocyte Activation , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Chemokine/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...