Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 23(7): e2300011, 2023 07.
Article in English | MEDLINE | ID: mdl-36905285

ABSTRACT

Currently available heart valve prostheses have no growth potential, requiring children with heart valve diseases to endure multiple valve replacement surgeries with compounding risks. This study demonstrates the in vitro proof of concept of a biostable polymeric trileaflet valved conduit designed for surgical implantation and subsequent expansion via transcatheter balloon dilation to accommodate the growth of pediatric patients and delay or avoid repeated open-heart surgeries. The valved conduit is formed via dip molding using a polydimethylsiloxane-based polyurethane, a biocompatible material shown here to be capable of permanent stretching under mechanical loading. The valve leaflets are designed with an increased coaptation area to preserve valve competence at expanded diameters. Four 22 mm diameter valved conduits are tested in vitro for hydrodynamics, balloon dilated to new permanent diameters of 23.26 ± 0.38 mm, and then tested again. Upon further dilation, two valved conduits sustain leaflet tears, while the two surviving devices reach final diameters of 24.38 ± 0.19 mm. After each successful dilation, the valved conduits show increased effective orifice areas and decreased transvalvular pressure differentials while maintaining low regurgitation. These results demonstrate concept feasibility and motivate further development of a polymeric balloon-expandable device to replace valves in children and avoid reoperations.


Subject(s)
Heart Valve Diseases , Heart Valve Prosthesis , Child , Humans , Biocompatible Materials , Catheters , Prosthesis Design
2.
Biomaterials ; 288: 121756, 2022 09.
Article in English | MEDLINE | ID: mdl-36041938

ABSTRACT

Materials currently used to repair or replace a heart valve are not durable. Their limited durability related to structural degeneration or thrombus formation is attributed to their inadequate mechanical properties and biocompatibility profiles. Our hypothesis is that a biostable material that mimics the structure, mechanical and biological properties of native tissue will improve the durability of these leaflets substitutes and in fine improve the patient outcome. Here, we report the development, optimization, and testing of a biomimetic, multilayered material (BMM), designed to replicate the native valve leaflets. Polycarbonate urethane and polycaprolactone have been processed as film, foam, and aligned fibers to replicate the leaflet's architecture and anisotropy, through solution casting, lyophilization, and electrospinning. Compared to the commercialized materials, our BMMs exhibited an anisotropic behavior and a closer mechanical performance to the aortic leaflets. The material exhibited superior biostability in an accelerated oxidization environment. It also displayed better resistance to protein adsorption and calcification in vitro and in vivo. These results will pave the way for a new class of advanced synthetic material with long-term durability for surgical valve repair or replacement.


Subject(s)
Biomimetic Materials , Heart Valve Prosthesis , Aortic Valve/surgery , Biomimetic Materials/chemistry , Biomimetics , Heart Valves , Humans , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...