Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(13): 15292-15304, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33764733

ABSTRACT

One of the great challenges of hybrid organic-inorganic perovskite photovoltaics is the material's stability at elevated temperatures. Over the past years, significant progress has been achieved in the field by compositional engineering of perovskite semiconductors, e.g., using multiple-cation perovskites. However, given the large variety of device architectures and nonstandardized measurement protocols, a conclusive comparison of the intrinsic thermal stability of different perovskite compositions is missing. In this work, we systematically investigate the role of cation composition on the thermal stability of perovskite thin films. The cations in focus of this study are methylammonium (MA), formamidinium (FA), cesium, and the most common mixtures thereof. We compare the thermal degradation of these perovskite thin films in terms of decomposition, optical losses, and optoelectronic changes when stressed at 85 °C for a prolonged time. Finally, we demonstrate the effect of thermal stress on perovskite thin films with respect to their performance in solar cells. We show that all investigated perovskite thin films show signs of degradation under thermal stress, though the decomposition is more pronounced in methylammonium-based perovskite thin films, whereas the stoichiometry in methylammonium-free formamidinium lead iodide (FAPbI3) and formamidinium cesium lead iodide (FACsPbI3) thin films is much more stable. We identify compositions of formamidinium and cesium to result in the most stable perovskite compositions with respect to thermal stress, demonstrating remarkable stability with no decline in power conversion efficiency when stressed at 85 °C for 1000 h. Thereby, our study contributes to the ongoing quest of identifying the most stable perovskite compositions for commercial application.

2.
ACS Appl Mater Interfaces ; 13(2): 2642-2653, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33405505

ABSTRACT

Hybrid organic-inorganic perovskites are highly promising candidates for the upcoming generation of single- and multijunction solar cells. Despite their extraordinarily good semiconducting properties, there is a need to increase the intrinsic material stability against heat, moisture, and light exposure. Understanding how variations in synthesis affect the bulk and surface stability is therefore of paramount importance to achieve a rapid commercialization on large scales. In this work, we show for the case of methylammonium lead iodide that a thorough control of the methylammonium iodide (MAI) partial pressure during co-evaporation is essential to limit photostriction and reach phase purity, which dictate the absorber stability. Kelvin probe force microscopy measurements in ultrahigh vacuum corroborate that off-stoichiometric absorbers prepared with an excess of MAI partial pressure exhibit traces of low-dimensional (two-dimensional, 2D) perovskites and stacking faults that have adverse effects on the intrinsic material stability. Under optimized growth conditions, time-resolved photoluminescence and work functions mapping corroborate that the perovskite films are less prone to heat and light degradation.

3.
ACS Appl Mater Interfaces ; 12(13): 15774-15784, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32182029

ABSTRACT

Flexible direct conversion X-ray detectors enable a variety of novel applications in medicine, industry, and science. Hybrid organic-inorganic perovskite semiconductors containing elements of high atomic number combine an efficient X-ray absorption with excellent charge transport properties. Due to their additional cost-effective and low-temperature processability, perovskite semiconductors represent promising candidates to be used as active materials in flexible X-ray detectors. Inspired by the promising results recently reported on X-ray detectors that are based on either triple cation perovskites or inkjet-printed perovskite quantum dots, we here investigate flexible inkjet-printed triple cation perovskite X-ray detectors. The performance of the detectors is evaluated by the X-ray sensitivity, the dark current, and the X-ray stability. Exposed to 70 kVp X-ray radiation, reproducible and highly competitive X-ray sensitivities of up to 59.9 µC/(Gyaircm2) at low operating voltages of 0.1 V are achieved. Furthermore, a significant dark current reduction is demonstrated in our detectors by replacing spin-coated poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) with sputtered NiOx hole transport layers. Finally, stable operation of a flexible X-ray detector for a cumulative X-ray exposure of 4 Gyair is presented, and the applicability of our devices as X-ray imaging detectors is shown. The results of this study represent a proof of concept toward flexible direct conversion X-ray detectors realized by cost-effective and high-throughput digital inkjet printing.

4.
ACS Appl Mater Interfaces ; 11(47): 44802-44810, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31670936

ABSTRACT

Perovskite solar cells (PSCs) are one of the most promising emerging energy-conversion technologies because of their high power conversion efficiencies (PCEs) and potentially low fabrication cost. To improve PCE, it is necessary to develop PSCs with good interfacial engineering to reduce the trap states and carrier transport barriers present at the various interfaces of the PSCs' architecture. This work reports a facile method to improve the interface between the perovskite absorber layer and the hole transport layer (HTL) by adding a small amount of acetonitrile (ACN) in the Spiro-OMeTAD precursor solution. This small amount of ACN dissolves the surface of the perovskite layer, allowing the formation of an interdiffusion structure between perovskite and Spiro-OMeTAD layers. This modification allows for an improved electrical contact, enhanced collection of holes, and reduced recombination losses at the interface between the perovskite and Spiro-OMeTAD layers and, consequently, enhances the PCE. A maximum PCE of 19.7% with low hysteresis and a steady-state power conversion efficiency of 19.0% is obtained for optimized PSCs.

5.
Adv Mater ; 31(26): e1806702, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30932255

ABSTRACT

Hybrid organic-inorganic metal halide perovskite semiconductors provide opportunities and challenges for the fabrication of low-cost thin-film photovoltaic devices. The opportunities are clear: the power conversion efficiency (PCE) of small-area perovskite photovoltaics has surpassed many established thin-film technologies. However, the large-scale solution-based deposition of perovskite layers introduces challenges. To form perovskite layers, precursor solutions are coated or printed and these must then be crystallized into the perovskite structure. The nucleation and crystal growth must be controlled during film formation and subsequent treatments in order to obtain high-quality, pin-hole-free films over large areas. A great deal of understanding regarding material engineering during the perovskite film formation process has been gained through spin-coating studies. Based on this, significant progress has been made on transferring material engineering strategies to processes capable of scale-up, such as blade coating, spray coating, inkjet printing, screen printing, relief printing, and gravure printing. Here, an overview is provided of the strategies that led to devices deposited by these scalable techniques with PCEs as high as 21%. Finally, the opportunities to fully close the shrinking gap to record spin-coated solar cells and to scale these efficiencies to large areas are highlighted.

6.
ACS Appl Mater Interfaces ; 10(26): 21985-21990, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29888902

ABSTRACT

Perovskite solar cells (PSCs) demonstrate excellent power conversion efficiencies (PCEs) but face severe stability challenges. One key degradation mechanism is exposure to ultraviolet (UV) light. However, the impact of different UV bands is not yet well established. Here, we systematically study the stability of PSCs on the basis of a methylammonium lead iodide (CH3NH3PbI3) absorber exposed to (i) 310-317 (UV-B range) and (ii) 360-380 nm (UV-A range), under accelerated conditions. We demonstrate that the investigated UV-B band is detrimental to the stability of PSCs, resulting in PCE degradation by more than 50% after an exposure period >1700 sun-hours. This finding is valid for architectures with a range of electron transport layers, including SnO2, compact-TiO2, electron-beam TiO2, and nanoparticle-TiO2. We also show that photodegradation is apparent for high, as well as for low illumination intensities of UV-B light, but not for illumination with UV-A wavelengths. Finally, we show that degradation of PSCs is preventable at the cost of a small fraction of photocurrent by using UV-filtering or luminescent downshifting layers.

7.
ACS Appl Mater Interfaces ; 10(19): 16390-16399, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29687715

ABSTRACT

This paper reports on the impact of outdoor temperature variations on the performance of organo metal halide perovskite solar cells (PSCs). It shows that the open-circuit voltage ( VOC) of a PSC decreases linearly with increasing temperature. Interestingly, in contrast to these expected trends, the current density ( JSC) of PSCs is found to decline strongly below 20% of the initial value upon cycling the temperatures from 10 to 60 °C and back. This decline in the current density is driven by an increasing series resistance and is caused by the fast temperature variations as it is not apparent for solar cells exposed to constant temperatures of the same range. The effect is fully reversible when the devices are kept illuminated at an open circuit for several hours. Given these observations, an explanation that ascribes the temperature variation-induced performance decline to ion accumulation at the contacts of the solar cell because of temperature variation-induced changes of the built-in field of the PSC is proposed. The effect might be a major obstacle for perovskite photovoltaics because the devices exposed to real outdoor temperature profiles over 4 h showed a performance decline of >15% when operated at a maximum power point.

SELECTION OF CITATIONS
SEARCH DETAIL
...