Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38611985

ABSTRACT

Lightweight structures with a high stiffness-to-weight ratio always play a significant role in weight reduction in the aerospace sector. The exploration of non-conventional structures for aerospace applications has been a point of interest over the past few decades. The adaptation of lattice structure and additive manufacturing in the design can lead to improvement in mechanical properties and significant weight reduction. The practicality of the non-conventional wing structure with lattices infilled as a replacement for the conventional spar-ribs wing is determined through finite element analysis. The optimal lattice-infilled wing structures are obtained via an automated iterative method using the commercial implicit modeling tool nTop and an ANSYS workbench. Among five different types of optimized lattice-infilled structures, the Kelvin lattice structure is considered the best choice for current applications, with comparatively minimal wing-tip deflection, weight, and stress. Furthermore, the stress distribution dependency on the lattice-unit cell type and arrangement is also established. Conclusively, the lattice-infilled structures have shown an alternative innovative design approach for lightweight wing structures.

2.
Polymers (Basel) ; 14(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36236111

ABSTRACT

Increasing the impact resistance properties of any transport vehicle is a real engineering challenge. This challenge is addressed in this paper by proposing a high-performing structural solution. Hence, the performance, in terms of improvement of the energy absorbing characteristics and the reduction of the peak accelerations, of highly efficient shock absorbers integrated in key locations of a minibus chassis have been assessed by means of numerical crash simulations. The high efficiency of the proposed damping system has been achieved by improving the current design and manufacturing process of the state-of-the-art shock absorbers. Indeed, the proposed passive safety system is composed of additive manufactured, hybrid polymer/composite (Polypropylene/Composite Fibres Reinforced Polymers-PP/CFRP) shock absorbers. The resulting hybrid component combines the high stiffness-to-mass and strength-to-mass ratios characteristic of the composites with the capability of the PP to dissipate energy by plastic deformation. Moreover, thanks to the Additive Manufacturing (AM) technique, low-mass and low-volume highly-efficient shock-absorbing sandwich structures can be designed and manufactured. The use of high-efficiency additively manufactured sandwich shock absorbers has been demonstrated as an effective way to improve the passive safety of passengers, achieving a reduction in the peak of the reaction force and energy absorbed in the safety cage of the chassis' structure, respectively, up to up to 30 kN and 25%.

3.
Materials (Basel) ; 15(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35207832

ABSTRACT

Increasing transportation safety can be observed as one of the biggest engineering challenges. This challenge often needs to be combined with the need to deliver engineering solutions that are able to lower the environmental impact of transportation, by reducing fuel consumption. Consequentially, these topics have attracted considerable research efforts. The present work aims to address the previously cited challenges by maximizing the energy absorption capabilities of hybrid aluminum/composite shock absorbers with minimal thickness and mass. This engineering solution makes it possible to lighten vehicles and reduce fuel consumption, without compromising safety, in terms of crashworthiness capabilities. A numerical sensitivity study is presented, where the absorbed energy/mass (AE/m) and the absorbed energy/total panel thickness (AE/Htot) ratios, as a consequence of low-velocity impact simulations performed on six different shock absorbers, are compared. These hybrid shock absorbers have been numerically designed by modifying the core thickness of two basic absorbers' configurations, characterized, respectively, by a metallic lattice core, intended to be produced through additive manufacturing, and a standard metallic honeycomb core. This work provides interesting information for the development of shock absorbers, which should be further developed with an experimental approach. Indeed, it demonstrates that, by integrating composite skins with a very light core producible, by means of additive manufacturing capabilities, it is possible to design shock absorbers with excellent performance, even for very thin configurations with 6 mm thickness, and to provide a significant increase in AE/m ratios when compared to the respective equal volume standard honeycomb core configurations. This difference between the AE/m ratios of configurations with different core designs increases with the growth in volume. In detail, for configurations with a total thickness of 6 mm, the AE/m increases in additive manufacturing configurations by approximately 93%; for those with a total thickness of 10 mm, the increase is 175%, and, finally, for those with a total thickness of 14 mm, the increase is 220%.

4.
Sensors (Basel) ; 21(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34450947

ABSTRACT

In this work, an analytical procedure for the preliminary design of shape memory alloy spring-based actuators is investigated. Two static analytical models are considered and interconnected in the frame of the proposed procedure. The first model, based on the works from An, is able to determine the material properties of the SMA components by means of experimental test data and is able to size the SMA component based on the requirements of the system. The second model, based on a work from Spaggiari, helps to design and size an antagonist spring system that allows one to obtain the geometric characteristics of springs (SMA and bias) and the mechanical characteristics of the entire actuator. The combined use of these models allows one to define and size a complex SMA actuator based on the actuation load requirements. To validate the design procedure, static experimental tests have been performed with the entire SMA actuator.


Subject(s)
Alloys , Shape Memory Alloys , Equipment Design
5.
Materials (Basel) ; 14(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204337

ABSTRACT

Composite materials, like metals, are subject to fatigue effects, representing one of the main causes for component collapse in carbon fiber-reinforced polymers. Indeed, when subject to low stress cyclic loading, carbon fiber-reinforced polymers exhibit gradual degradation of the mechanical properties. The numerical simulation of this phenomenon, which can strongly reduce time and costs to market, can be extremely expensive in terms of computational effort since a very high number of static analyses need to be run to take into account the real damage propagation due the fatigue effects. In this paper, a novel cycle jump strategy, named Smart Cycle strategy, is introduced in the numerical model to avoid the simulation of every single cycle and save computational resources. This cycle jump strategy can be seen as an enhancement of the empirical model proposed by Shokrieh and Lessard for the evaluation of the fatigue-induced strength and stiffness degradation. Indeed, the Smart Cycle allows quickly obtaining a preliminary assessment of the fatigue behavior of composite structures. It is based on the hypothesis that the stress redistribution, due to the fatigue-induced gradual degradation of the material properties, can be neglected until sudden fiber and/or matrix damage is verified at element/lamina level. The numerical procedure has been implemented in the commercial finite element code ANSYS MECHANICAL, by means of Ansys Parametric Design Languages (APDL). Briefly, the Smart Cycle routine is able to predict cycles where fatigue failure criteria are likely to be satisfied and to limit the numerical simulation to these cycles where a consistent damage propagation in terms of fiber and matrix breakage is expected. The proposed numerical strategy was preliminarily validated, in the frame of this research study, on 30° fiber-oriented unidirectional coupons subjected to tensile-tensile fatigue loading conditions. The numerical results were compared with literature experimental data in terms of number of cycles at failure for different percentage of the static strength. Lastly, in order to assess its potential in terms of computational time saving on more complex structures and different loading conditions, the proposed numerical approach was used to investigate the fatigue behavior of a cross-ply open-hole composite panel under tension-tension fatigue loading conditions.

6.
Materials (Basel) ; 12(11)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31181675

ABSTRACT

In this paper, the skin-stringer separation phenomenon that occurs in stiffened composite panels under compression is numerically studied. Since the mode I fracture toughness and, consequently, the skin-stringer separation can be influenced by the fibre bridging phenomenon at the skin-stringer interface, in this study, comparisons among three different material systems with different fibre bridging sensitivities have been carried out. Indeed, a reference material system has been compared, in terms of toughness performance, against two materials with different degrees of sensitivity to fibre bridging. A robust numerical procedure for the delamination assessment has been used to mimic the skin-stringer separation. When analysing the global compressive behaviour of the stiffened panel, intra-laminar damages have been considered in conjunction with skin-stringer debonding to evaluate the effect of the fibre and matrix breakage on the separation between the skin and the stringer for the three analysed material systems. The latter are characterised by different toughness characteristics and fibre bridging sensitivities, resulting in a different material toughness.

SELECTION OF CITATIONS
SEARCH DETAIL
...