Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825115

ABSTRACT

The aim of this study has been to determine the components, cytokine level and immunoglobulin level of koumiss during different fermentation periods, and to reveal the interrelation between these parameters. For achieving this objective, 10 samples of koumiss were prepared and randomly divided into 2 groups: the first group was sampled at 0, 1, 5, 12, and 24 h of incubation at room temperature for analysis. The second group was stored at +4°C, and samples were taken on the 5th, 10th, 15th, and 20th days. The count of Enterobacteriaceae spp, Staphylococcus, and Micrococcus spp progressively decreased with the period of fermentation until in the final samples of both groups they became undetectable. There were positive or negative correlations between cytokine and immunoglobulin levels and the physicochemical and microbiological parameters in the koumiss samples in both groups. However, the levels of IFN-γ, IL-2, TNF-α, and IgG did not change significantly over time in both group. In conclusion, it is clear that traditionally prepared koumiss with different fermentation time and temperature does not show any discrepancy in the concentrations of cytokine and immunoglobulin.

2.
Environ Sci Pollut Res Int ; 30(27): 70842-70853, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37155108

ABSTRACT

This study showed the protective effect of polydatin (PD), which has an antioxidant activity against oxidative stress in mice caused by aflatoxin B1 (AFB1). In this study, 36 male Swiss albino mice were divided equally into 6 groups: 0.2 mL of FTS was administered to the control group, 0.2 mL of olive oil to the second group, and 0.75 mg/kg AFB1 to the third group by intragastric gavage every day for 28 days. The fourth, fifth, and sixth groups were administered 50, 100, and 200 mg/kg PD and 0.75 mg/kg AFB1 intragastrically for 28 days, respectively. AFB1 administration increased plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, creatinine, and malondialdehyde levels in blood and tissue samples but decreased the level of glutathione and the activities of superoxide dismutase and catalase. On the other hand, it was determined that PD applications depending on the increasing doses brought these levels closer to normal. In addition, AFB1 administration increased the amount of ssDNA and liver COX-2, TNF-α, IL-6, NFκB, and Cyp3a11 mRNA expression levels; on the other hand, it decreased the IL-2 mRNA expression level. In contrast, increasing doses of PD application regulated the amount of ssDNA and these mRNA expression levels. Additionally, histopathological damage was observed in the liver and kidney tissues of the AFB1 group, while PD applications in a dose-dependent manner improved these damages. As a result, it was determined that PD reduced AFB1-induced oxidative stress, DNA damage, and inflammation and exhibited a protective effect on tissues in mice.


Subject(s)
Aflatoxin B1 , Antioxidants , Cytokines , Animals , Male , Mice , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Cytokines/metabolism , DNA Damage , Liver , Oxidative Stress
3.
Plants (Basel) ; 12(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37111877

ABSTRACT

Propolis is a natural hive product collected by honeybees from different plants and trees. The collected resins are then mixed with bee wax and secretions. Propolis has a long history of use in traditional and alternative medicine. Propolis possesses recognized antimicrobial and antioxidant properties. Both properties are characteristics of food preservatives. Moreover, most propolis components, in particular flavonoids and phenolic acids, are natural constituents of food. Several studies suggest that propolis could find use as a natural food preservative. This review is focused on the potential application of propolis in the antimicrobial and antioxidant preservation of food and its possible application as new, safe, natural, and multifunctional material in food packaging. In addition, the possible influence of propolis and its used extracts on the sensory properties of food is also discussed.

4.
Nutrients ; 15(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36904163

ABSTRACT

Bee products, including honey, have been utilized since ancient times for nutritional and therapeutic purposes. Recently, other bee products such as bee pollen, royal jelly, and propolis have caught a lot of attention. Being high in antioxidants and bioactive compounds, these products have established their applications in the pharmaceutical field as supplementary or alternative medicines. This review focuses on their use against polycystic ovarian syndrome (PCOS)-related infertility. A systematic search of electronic databases including PubMed, Web of Science ScienceDirect, and Google Scholar was conducted from their inceptions up to November 2022. Studies with a small sample size, studies with inconclusive data, and pre-prints have been excluded. A narrative synthesis was performed during draft preparation after the authors independently performed a literature search. A total of 47 studies were finalized for the review. It can be observed that in vivo data on the use of bee products in treating PCOS mostly deals with their use in synergism with the PCOS medicines to enhance their effect and/or curb their side effects; however, clinical trials for the same are limited. With the amount of data being limited, it is difficult to map out the mechanism by which these products act in managing PCOS inside the human body. The review gives detailed insights into the reversal and restorative properties of bee products against the aberrations in reproductive health caused by PCOS.


Subject(s)
Infertility , Polycystic Ovary Syndrome , Female , Humans , Polycystic Ovary Syndrome/therapy , Antioxidants
5.
Environ Sci Pollut Res Int ; 30(4): 10710-10723, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36085217

ABSTRACT

Clarifying the interactions between substances as a result of exposure to multiple xenobiotics and determining the impacts on health are important from the toxicological point of view. Therefore, the aim of the study was to investigate the synergistic toxic effects of ethanol and 2,4-dichlorophenoxyacetic acid (2,4-D) in male albino rats. A total number of 28 Wistar male rats were divided into 4 groups (7/each), and 2,4-D (5 mg/kg) and ethanol (3 g/kg) were administered orally to rats for 60 days, either alone or in combination. Co-administration of ethanol and 2,4-D increased liver functional enzyme levels and lipid peroxidation in blood and tissues while decreased glutathione and antioxidant enzyme activities when compared to individual applications. Furthermore, co-administration of ethanol and 2,4-D caused DNA damage as well as the increase in apoptotic and proinflammatory cytokine gene expressions. Furthermore, histopathological examination of the tissues especially liver and kidney revealed that these two substances induced more serious damage. In conclusion, co-administration of ethanol and 2,4-D resulted in strong toxic effects on tissues (especially liver) with a synergistic interaction and give rise to serious toxicological drawbacks.


Subject(s)
Ethanol , Herbicides , Animals , Rats , Male , Ethanol/toxicity , Oxidative Stress , Oxidants/pharmacology , Catalase/metabolism , Superoxide Dismutase/metabolism , Rats, Wistar , Antioxidants/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Liver , Lipid Peroxidation , Herbicides/metabolism , 2,4-Dichlorophenoxyacetic Acid/toxicity , 2,4-Dichlorophenoxyacetic Acid/metabolism , DNA Damage , Apoptosis
6.
Environ Sci Pollut Res Int ; 30(3): 6414-6423, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35996050

ABSTRACT

Pyraclostrobin (Pyra) is a fungicide in the strobilurin class and has proven to be very toxic to organisms primarily aquatic species. Resveratrol (Res) is a phytoalexin that exhibits multiple bioactivities as anti-oxidative, anti-inflammatory, cardiovascular protective, and anti-aging and is found in plant species such as mulberry, peanut, and grape. This study aimed to determine the protective effect of Res against Pyra-induced lipid peroxidation, oxidative stress, and DNA damage in rats. For this purpose, a total of 48 male rats divided into 6 groups - 8 in each group - were exposed to 30 mg/kg Pyra by oral gavage once a day for 30 days and to three different concentrations of Res (5, 10, and 20 mg/kg) together with Pyra. Pyra administration increased liver enzyme parameters and malondialdehyde (MDA) levels whereas decreased glutathione (GSH) levels and activities of superoxide dismutase (SOD) and catalase (CAT). Also, Pyra treatment increased pro-apoptotic (Bax), apoptotic (Caspase-3, Caspase-8, and Caspase-9), pro-inflammatory (NFκB), cancer (CYP2E1), and cell regulatory (p53) gene expressions and decreased anti-apoptotic (Bcl-2) gene expression in the liver. Furthermore, DNA damage in blood and histopathological changes in the liver and kidney were observed with Pyra administration. In contrast, Res administrations in a dose-dependent manner improved Pyra-induced lipid peroxidation, oxidative and DNA damages, expression levels of these genes in the liver, and histopathological changes in the liver and kidney. Consequently, the treatment of Res, known for its anti-oxidant and protective properties, exhibited a protective effect on Pyra-induced lipid peroxidation, oxidant/anti-oxidant status, gene expressions, and DNA damage in rats.


Subject(s)
Antioxidants , Oxidative Stress , Rats , Animals , Resveratrol/pharmacology , Resveratrol/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Strobilurins/pharmacology , Lipid Peroxidation , Superoxide Dismutase/metabolism , DNA Damage , Anti-Inflammatory Agents/pharmacology , Liver , Glutathione/metabolism
7.
J Agric Food Chem ; 70(51): 16069-16079, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36515136

ABSTRACT

Biopharmaceutics Classification System (BCS) class II and IV drugs exhibit low solubility and suffer a limitation in oral administration. Exosomes have attracted intensive attention in the efficient delivery of such compounds. However, low gastrointestinal stability and high production cost of exosomes hinder their development as drug carriers. Here, milk exosomes are functionalized with phosphatidylserine and are capable of improving the solubility of BCS class II and IV drugs, resulting in facilitating the oral delivery of the drugs. A natural flavonoid, α-mangostin, is loaded into exosomes (AExo) to enhance the antibacterial efficiency, demonstrated by clearing 99% of bacteria in macrophages. Furthermore, AExo exhibits high mucus penetrability and shows a significant therapeutic efficacy in two animal infection models. Collectively, this work expands the application of exosomes from bovine milk with simple operation and low cost, shedding light on the potential of milk exosomes in improving the solubility of drugs to enhance the efficacy of oral administration.


Subject(s)
Bacterial Infections , Exosomes , Intestinal Diseases , Animals , Milk , Drug Carriers , Administration, Oral , Solubility , Bacteria
8.
Cancers (Basel) ; 14(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36551687

ABSTRACT

Cancer is one of the major deadly diseases globally. The alarming rise in the mortality rate due to this disease attracks attention towards discovering potent anticancer agents to overcome its mortality rate. The discovery of novel and effective anticancer agents from natural sources has been the main point of interest in pharmaceutical research because of attractive natural therapeutic agents with an immense chemical diversity in species of animals, plants, and microorganisms. More than 60% of contemporary anticancer drugs, in one form or another, have originated from natural sources. Plants and microbial species are chosen based on their composition, ecology, phytochemical, and ethnopharmacological properties. Plants and their derivatives have played a significant role in producing effective anticancer agents. Some plant derivatives include vincristine, vinblastine, irinotecan, topotecan, etoposide, podophyllotoxin, and paclitaxel. Based on their particular activity, a number of other plant-derived bioactive compounds are in the clinical development phase against cancer, such as gimatecan, elomotecan, etc. Additionally, the conjugation of natural compounds with anti-cancerous drugs, or some polymeric carriers particularly targeted to epitopes on the site of interest to tumors, can generate effective targeted treatment therapies. Cognizance from such pharmaceutical research studies would yield alternative drug development strategies through natural sources which could be economical, more reliable, and safe to use.

9.
Life (Basel) ; 12(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36295053

ABSTRACT

Microbial biofilm is an aggregation of microbial species that are either attached to surfaces or organized into an extracellular matrix. Microbes in the form of biofilms are highly resistant to several antimicrobials compared to planktonic microbial cells. Their resistance developing ability is one of the major root causes of antibiotic resistance in health sectors. Therefore, effective antibiofilm compounds are required to treat biofilm-associated health issues. The awareness of biofilm properties, formation, and resistance mechanisms facilitate researchers to design and develop combating strategies. This review highlights biofilm formation, composition, major stability parameters, resistance mechanisms, pathogenicity, combating strategies, and effective biofilm-controlling compounds. The naturally derived products, particularly plants, have demonstrated significant medicinal properties, producing them a practical approach for controlling biofilm-producing microbes. Despite providing effective antibiofilm activities, the plant-derived antimicrobial compounds may face the limitations of less bioavailability and low concentration of bioactive molecules. The microbes-derived and the phytonanotechnology-based antibiofilm compounds are emerging as an effective approach to inhibit and eliminate the biofilm-producing microbes.

10.
Nutrients ; 14(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36079835

ABSTRACT

Bee products have been extensively employed in traditional therapeutic practices to treat several diseases and microbial infections. Numerous bioactive components of bee products have exhibited several antibacterial, antifungal, antiviral, anticancer, antiprotozoal, hepatoprotective, and immunomodulatory properties. Apitherapy is a form of alternative medicine that uses the bioactive properties of bee products to prevent and/or treat different diseases. This review aims to provide an elaborated vision of the antiviral activities of bee products with recent advances in research. Since ancient times, bee products have been well known for their several medicinal properties. The antiviral and immunomodulatory effects of bee products and their bioactive components are emerging as a promising alternative therapy against several viral infections. Numerous studies have been performed, but many clinical trials should be conducted to evaluate the potential of apitherapy against pathogenic viruses. In that direction, here, we review and highlight the potential roles of bee products as apitherapeutics in combating numerous viral infections. Available studies validate the effectiveness of bee products in virus inhibition. With such significant antiviral potential, bee products and their bioactive components/extracts can be effectively employed as an alternative strategy to improve human health from individual to communal levels as well.


Subject(s)
Propolis , Viruses , Animals , Antiviral Agents/pharmacology , Apitherapy , Bees , Humans , Mammals , Propolis/pharmacology , Propolis/therapeutic use
11.
Life (Basel) ; 12(8)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35892912

ABSTRACT

Biofilm formation on surfaces via microbial colonization causes infections and has become a major health issue globally. The biofilm lifestyle provides resistance to environmental stresses and antimicrobial therapies. Biofilms can cause several chronic conditions, and effective treatment has become a challenge due to increased antimicrobial resistance. Antibiotics available for treating biofilm-associated infections are generally not very effective and require high doses that may cause toxicity in the host. Therefore, it is essential to study and develop efficient anti-biofilm strategies that can significantly reduce the rate of biofilm-associated healthcare problems. In this context, some effective combating strategies with potential anti-biofilm agents, including plant extracts, peptides, enzymes, lantibiotics, chelating agents, biosurfactants, polysaccharides, organic, inorganic, and metal nanoparticles, etc., have been reviewed to overcome biofilm-associated healthcare problems. From their extensive literature survey, it can be concluded that these molecules with considerable structural alterations might be applied to the treatment of biofilm-associated infections, by evaluating their significant delivery to the target site of the host. To design effective anti-biofilm molecules, it must be assured that the minimum inhibitory concentrations of these anti-biofilm compounds can eradicate biofilm-associated infections without causing toxic effects at a significant rate.

12.
Toxicol Res (Camb) ; 8(2): 262-269, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30997025

ABSTRACT

Bisphenol A (BPA) is one of the most produced chemicals in the world and has been widely employed in the food industry. Continuous and widespread exposure to BPA through drinking water and food leads to health concerns for humans. This study evaluated the effects of boron (B) on BPA-mediated oxidative stress in male Wistar albino rats. Rats were equally divided into 5 groups; corn oil was given orally to the control group; 25 mg kg-1 of BPA dissolved in corn oil was given orally to the second group. All other groups received the same dose of BPA and different doses of B (5, 10, and 20 mg kg-1 per day, respectively) orally for 30 days. The administration of BPA significantly decreased glutathione levels and increased malondialdehyde levels in rat tissues. Furthermore, BPA treatment reduced the catalase and superoxide dismutase activities in tissues and erythrocytes. Also, mRNA expression levels of TNF-α, IL-1ß, and IL-6 in the brain, liver, and testes of rats were augmented, whereas IL-10 was decreased with BPA treatment. Besides, BPA treatment adversely altered biochemical parameters and caused damage to the cell integrity of rat tissues. However, B administration reversed BPA-induced alterations in rat tissues in a dose-dependent manner. Furthermore, B exhibited antioxidant and anti-inflammatory effects and regulated metabolic and histopathological alterations in male Wistar albino rats exposed to BPA.

13.
J Biochem Mol Toxicol ; 33(2): e22252, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30368975

ABSTRACT

Arsenic, an element found in nature, causes hazardous effects on living organisms. Meanwhile, natural compounds exhibit protective effects against hazardous substances. This study evaluated the effects of boron against arsenic-induced genotoxicity and altered biochemical parameters in rats. Thirty-five male Wistar albino rats were equally divided into five groups, and the experimental period lasted 30 days. One group was used as the control, and another group was treated with 100 mg/L arsenic in drinking water. The other groups were orally treated with 5, 10, and 20 mg/kg boron plus arsenic (100 mg/L via drinking water). Arsenic caused changes in biochemical parameters, total oxidant/antioxidant status, and DNA damage in mononuclear leukocytes. Moreover, it increased IFN-γ, IL-1ß, TNF-α, and NFκB mRNA expression levels in rat tissue. However, boron treatment improved arsenic-induced alterations in biochemical parameters and increases in DNA damage and proinflammatory cytokine gene expressions.


Subject(s)
Arsenic Poisoning , Arsenic/toxicity , Boron/pharmacology , Cytokines/biosynthesis , DNA Damage , Gene Expression Regulation/drug effects , Animals , Arsenic Poisoning/drug therapy , Arsenic Poisoning/metabolism , Arsenic Poisoning/pathology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Male , Oxidation-Reduction/drug effects , Rats , Rats, Wistar
14.
Food Chem Toxicol ; 118: 745-752, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29913234

ABSTRACT

Acrylamide (ACR) is a hazardous substance associated with the accumulation of excessive reactive oxygen species and causes oxidative stress. Presence of ACR in foods leads to public health concerns due to its known neurotoxic, genotoxic, and carcinogenic effects. The present study investigated the ameliorative effects of boron (B) against ACR exposed rats. Forty Wistar albino male rats, fed with low-boron diet, were randomly and equally allocated into 5 groups. The control group was orally treated with physiological saline as placebo, the second group was orally given 15 mg/kg ACR. The other groups were orally treated with 15 mg/kg ACR and B at the levels of 5, 10, and 20 mg/kg/day for 60 days, respectively. ACR-treatment significantly increased malondialdehyde levels whereas decreased glutathione levels in rat tissues. Also, ACR-treatment increased the activities of superoxide dismutase and catalase in erythrocytes and tissues. Meanwhile, mRNA expression levels of NFĸB, IFN-γ, IL-1ß, and TNF-α in liver and brain of rats were increased under ACR treatment. Additionally, ACR caused a significant decrease in the level of high-density lipoprotein, with increase in the levels of low-density lipoprotein, triglyceride, cholesterol, glucose, urea nitrogen, and creatinine. Lastly, B alleviated histopathological alterations induced by ACR in rat tissues.


Subject(s)
Acrylamide/toxicity , Boron/pharmacology , Inflammation/prevention & control , Oxidative Stress/drug effects , Animal Feed/analysis , Animals , Antioxidants/metabolism , Boron/analysis , Catalase/metabolism , Gene Expression/drug effects , Glutathione/metabolism , Lipid Peroxidation/drug effects , Male , Rats, Wistar , Superoxide Dismutase/metabolism
15.
Chem Commun (Camb) ; 49(45): 5198-200, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23632899

ABSTRACT

We present a cellular logic circuit for deciphering the profiles of toxin production in B. cereus, using multiple readout techniques based on the pore formation on the cell membrane. This new assay enables the simultaneous detection of seven biomarkers in pathogenic strains from various samples.


Subject(s)
Bacillus cereus/metabolism , Bacterial Toxins/analysis , Bacterial Toxins/toxicity , Biosensing Techniques/instrumentation , Cell Membrane/microbiology , Toxicity Tests/instrumentation , Animals , Bacterial Toxins/metabolism , Cell Survival , Chlorocebus aethiops , Equipment Design , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...