Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurogastroenterol Motil ; 28(11): 1632-1640, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27196538

ABSTRACT

BACKGROUND: Among the different mechanisms involved in irritable bowel syndrome (IBS) physiopathology, visceral hypersensitivity seems to play a key role. It involves sensitization of the colonic primary afferent fibers, especially through an overexpression of ion channels. The aims of this translational study were to investigate the colonic expression of Cav 3.2 calcium channels and their involvement in an animal model of colonic hypersensitivity, and to assess their expression in the colonic mucosa of symptomatic IBS patients. METHODS: This bench-to-bed study combined a preclinical experimental study on mice and a case-control clinical study. Preclinical studies were performed on wild-type and Cav 3.2-KO mice. Colonic sensitivity and Cav 3.2 expression were studied after a low-dose treatment of dextran sodium sulfate (DSS 0.5%). Regarding the clinical study, colonic biopsies were performed in 14 IBS patients and 16 controls during a colonoscopy to analyze the mucosal Cav 3.2 expression. KEY RESULTS: Wild-type, but not Cav 3.2-KO, mice developed visceral hypersensitivity without colonic inflammation, after 0.5% DSS treatment. A significant increase of Cav 3.2 mRNA (p = 0.04) was found in the colon of low-dose DSS-treated wild-type (WT) mice compared to their controls. In human colonic biopsies, the Cav 3.2 mRNA level was significantly higher in the IBS group compared to the control group (p = 0.01). The immunofluorescence staining revealed their protein expression in colonic mucosa, particularly in nerve fibers. CONCLUSIONS & INFERENCES: This translational study supports the involvement of the calcium channels Cav 3.2 in abdominal pain, as observed in IBS patients. It opens new therapeutic perspectives based on molecules specifically blocking these channels.


Subject(s)
Calcium Channels, T-Type/biosynthesis , Colon/metabolism , Disease Models, Animal , Irritable Bowel Syndrome/metabolism , Visceral Pain/metabolism , Animals , Calcium Channels, T-Type/genetics , Colon/pathology , Female , Gene Expression , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Visceral Pain/genetics , Visceral Pain/pathology
2.
Neurogastroenterol Motil ; 25(11): e740-54, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23902154

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder associated with idiopathic colonic hypersensitivity (CHS). However, recent studies suggest that low-grade inflammation could underlie CHS in IBS. The pro-inflammatory mediator nerve growth factor (NGF) plays a key role in the sensitization of peripheral pain pathways and several studies have reported its contribution to visceral pain development. NGF modulates the expression of Acid-Sensing Ion Channels (ASICs), which are proton sensors involved in sensory neurons sensitization. This study examined the peripheral contribution of NGF and ASICs to IBS-like CHS induced by butyrate enemas in the rat colon. METHODS: Colorectal distension and immunohistochemical staining of sensory neurons were used to evaluate NGF and ASICs contribution to the development of butyrate-induced CHS. KEY RESULTS: Systemic injection of anti-NGF antibodies or the ASICs inhibitor amiloride prevented the development of butyrate-induced CHS. A significant increase in NGF and ASIC1a protein expression levels was observed in sensory neurons of rats displaying butyrate-induced CHS. This increase was specific of small- and medium-diameter L1 + S1 sensory neurons, where ASIC1a was co-expressed with NGF or trkA in CGRP-immunoreactive somas. ASIC1a was also overexpressed in retrogradely labeled colon sensory neurons. Interestingly, anti-NGF antibody administration prevented ASIC1a overexpression in sensory neurons of butyrate-treated rats. CONCLUSIONS & INFERENCES: Our data suggest that peripheral NGF and ASIC1a concomitantly contribute to the development of butyrate-induced CHS NGF-ASIC1a interplay may have a pivotal role in the sensitization of colonic sensory neurons and as such, could be considered as a potential new therapeutic target for IBS treatment.


Subject(s)
Acid Sensing Ion Channels/metabolism , Ganglia, Spinal/metabolism , Hyperalgesia/etiology , Irritable Bowel Syndrome/metabolism , Nerve Growth Factor/metabolism , Acid Sensing Ion Channel Blockers/pharmacology , Amiloride/pharmacology , Animals , Disease Models, Animal , Ganglia, Spinal/drug effects , Hyperalgesia/metabolism , Hyperalgesia/physiopathology , Irritable Bowel Syndrome/physiopathology , Male , Nerve Growth Factor/pharmacology , Pain Measurement , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...