Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5937, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34642345

ABSTRACT

Development of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas. We demonstrate that the presence of CH2 and H radicals leads to efficient C-C chain growth, producing micron-length fibres of unbranched alkanes with an average length distribution between C23-C33. Ab-initio calculations uncover a thermodynamically favourable methylene coupling process on the surface of carbonaceous nanoparticles, which is kinematically facilitated by a trap-and-release mechanism of the reactants and nanoparticles that is confirmed by a steady incompressible flow simulation. This work could lead to future alternative sustainable synthetic routes to critical alkane-based chemicals or fuels.

2.
Astrophys J ; 906(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33594293

ABSTRACT

Silicon is present in interstellar dust grains, meteorites and asteroids, and to date thirteen silicon-bearing molecules have been detected in the gas-phase towards late-type stars or molecular clouds, including silane and silane derivatives. In this work, we have experimentally studied the interaction between atomic silicon and hydrogen under physical conditions mimicking those at the atmosphere of evolved stars. We have found that the chemistry of Si, H and H2 efficiently produces silane (SiH4), disilane (Si2H6) and amorphous hydrogenated silicon (a-Si:H) grains. Silane has been definitely detected towards the carbon-rich star IRC+10216, while disilane has not been detected in space yet. Thus, based on our results, we propose that gas-phase reactions of atomic Si with H and H2 are a plausible source of silane in C-rich AGBs, although its contribution to the total SiH4 abundance may be low in comparison with the suggested formation route by catalytic reactions on the surface of dust grains. In addition, the produced a-Si:H dust analogs decompose into SiH4 and Si2H6 at temperatures above 500 K, suggesting an additional mechanism of formation of these species in envelopes around evolved stars. We have also found that the exposure of these dust analogs to water vapor leads to the incorporation of oxygen into Si-O-Si and Si-OH groups at the expense of SiH moieties, which implies that, if this type of grains are present in the interstellar medium, they will be probably processed into silicates through the interaction with water ices covering the surface of dust grains.

3.
Rev Sci Instrum ; 91(12): 124101, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33379937

ABSTRACT

Laboratory astrochemistry aims at simulating, in the laboratory, some of the chemical and physical processes that operate in different regions of the universe. Amongst the diverse astrochemical problems that can be addressed in the laboratory, the evolution of cosmic dust grains in different regions of the interstellar medium (ISM) and its role in the formation of new chemical species through catalytic processes present significant interest. In particular, the dark clouds of the ISM dust grains are coated by icy mantles and it is thought that the ice-dust interaction plays a crucial role in the development of the chemical complexity observed in space. Here, we present a new ultra-high vacuum experimental station devoted to simulating the complex conditions of the coldest regions of the ISM. The INFRA-ICE machine can be operated as a standing alone setup or incorporated in a larger experimental station called Stardust, which is dedicated to simulate the formation of cosmic dust in evolved stars. As such, INFRA-ICE expands the capabilities of Stardust allowing the simulation of the complete journey of cosmic dust in space, from its formation in asymptotic giant branch stars to its processing and interaction with icy mantles in molecular clouds. To demonstrate some of the capabilities of INFRA-ICE, we present selected results on the ultraviolet photochemistry of undecane (C11H24) at 14 K. Aliphatics are part of the carbonaceous cosmic dust, and recently, aliphatics and short n-alkanes have been detected in situ in the comet 67P/Churyumov-Gerasimenko.

4.
Astrophys J ; 895(2)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-33154601

ABSTRACT

Interstellar carbonaceous dust is mainly formed in the innermost regions of circumstellar envelopes around carbon-rich asymptotic giant branch (AGB) stars. In these highly chemically stratified regions, atomic and diatomic carbon, along with acetylene are the most abundant species after H2 and CO. In a previous study, we addressed the chemistry of carbon (C and C2) with H2 showing that acetylene and aliphatic species form efficiently in the dust formation region of carbon-rich AGBs whereas aromatics do not. Still, acetylene is known to be a key ingredient in the formation of linear polyacetylenic chains, benzene and polycyclic aromatic hydrocarbons (PAHs), as shown by previous experiments. However, these experiments have not considered the chemistry of carbon (C and C2) with C2H2. In this work, by employing a sufficient amount of acetylene, we investigate its gas-phase interaction with atomic and diatomic carbon. We show that the chemistry involved produces linear polyacetylenic chains, benzene and other PAHs, which are observed with high abundances in the early evolutionary phase of planetary nebulae. More importantly, we have found a non-negligible amount of pure and hydrogenated carbon clusters as well as aromatics with aliphatic substitutions, both being a direct consequence of the addition of atomic carbon. The incorporation of alkyl substituents into aromatics can be rationalized by a mechanism involving hydrogen abstraction followed by methyl addition. All the species detected in gas phase are incorporated into the nanometric sized dust analogues, which consist of a complex mixture of sp, sp2 and sp3 hydrocarbons with amorphous morphology.

5.
Nat Astron ; 4(1): 97-105, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31934643

ABSTRACT

Evolved stars are a foundry of chemical complexity, gas and dust that provides the building blocks of planets and life, and dust nucleation first occurs in their photosphere. Despite their importance, the circumstellar regions enveloping these stars remain hidden to many observations, thus dust formation processes are still poorly understood. Laboratory astrophysics provides complementary routes to unveil these chemical processes, but most experiments rely on combustion or plasma decomposition of molecular precursors under physical conditions far removed from those in space. We have built an ultra-high vacuum machine combining atomic gas aggregation with advanced in-situ characterization techniques to reproduce and characterize the bottom-up dust formation process. We show that carbonaceous dust analogues formed from low-pressure gas-phase condensation of C atoms in a hydrogen atmosphere, in a C/H2 ratio similar to that reported for evolved stars, leads to the formation of amorphous C nanograins and aliphatic C-clusters. Aromatic species or fullerenes do not form effectively under these conditions, raising implications for the revision of the chemical mechanisms taking place in circumstellar envelopes.

6.
Science ; 347(6220): aaa3905, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25613898

ABSTRACT

Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10(-10) to 10(-7) kilograms, and 48 grains of mass 10(-5) to 10(-2) kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.

7.
Phys Chem Chem Phys ; 13(17): 8037-45, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21445409

ABSTRACT

The morphology of water ice in the interstellar medium is still an open question. Although accretion of gaseous water could not be the only possible origin of the observed icy mantles covering dust grains in cold molecular clouds, it is well known that water accreted from the gas phase on surfaces kept at 10 K forms ice films that exhibit a very high porosity. It is also known that in the dark clouds H(2) formation occurs on the icy surface of dust grains and that part of the energy (4.48 eV) released when adsorbed atoms react to form H(2) is deposited in the ice. The experimental study described in the present work focuses on how relevant changes of the ice morphology result from atomic hydrogen exposure and subsequent recombination. Using the temperature-programmed desorption (TPD) technique and a method of inversion analysis of TPD spectra, we show that there is an exponential decrease in the porosity of the amorphous water ice sample following D-atom irradiation. This decrease is inversely proportional to the thickness of the ice and has a value of ϕ(0) = 2 × 10(16) D-atoms cm(-2) per layer of H(2)O. We also use a model which confirms that the binding sites on the porous ice are destroyed regardless of their energy depth, and that the reduction of the porosity corresponds in fact to a reduction of the effective area. This reduction appears to be compatible with the fraction of D(2) formation energy transferred to the porous ice network. Under interstellar conditions, this effect is likely to be efficient and, together with other compaction processes, provides a good argument to believe that interstellar ice is amorphous and non-porous.

SELECTION OF CITATIONS
SEARCH DETAIL
...