Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 12(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35564121

ABSTRACT

We have presented a theoretical investigation of exciton and biexciton states for the ground and excited levels in a strongly oblate ellipsoidal quantum dot made from GaAs. The variational trial wave functions for the ground and excited states of the exciton and biexciton are constructed on the base of one-particle wave functions. The energies for the ground and excited levels, depending on the ellipsoidal quantum dot's geometrical parameters, are depicted in the framework of the variational method. The oscillator strength of the transition from exciton to biexciton states for ground and excited levels is investigated as a function of the ellipsoidal quantum dot's small and large semiaxes. The third-order optical susceptibilities of ground and excited biexcitons around one-photon and two-photon resonances are calculated as a function of the photon energy. The dependences of third-order optical susceptibilities for the ground and excited levels on the photon energy for different values of the ellipsoidal quantum dot's semiaxis are revealed. The absorption coefficients in the ellipsoidal quantum dot, both for ground and excited states of exciton and biexciton, are calculated. The absorption coefficients for the ground level of exciton and biexciton for the fixed value of the large semiaxis and for the different values of the small semiaxis are determined. Finally, the two-photon absorption coefficient of the biexciton in the GaAs ellipsoidal quantum dot is computed.

2.
iScience ; 25(4): 104057, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35345464

ABSTRACT

Manipulation by external pressure of the optical response of 2D Metal Halide Perovskites (MHPs) is a fascinating route to tune their properties and promote the emergence of novel features. We investigate here DA2PbI4 and DA2GeI4 (DA = decylammonium) perovskites in the pressure range up to ∼12 GPa by X-ray powder diffraction, absorption, and photoluminescence spectroscopy. Although the two systems share a similar structural evolution with pressure, the optical properties are rather different and influenced by Pb or Ge. DA2PbI4 shows a progressive red shift from 2.28 eV (P = 0 GPa) to 1.64 eV at 11.5 GPa, with a narrow PL emission, whereas DA2GeI4, changes from a non-PL system at ambient pressure to a clear broadband emitter centered around 730 nm with an intensity maximum at about 3.7 GPa. These results unveil the role of the central atom on the nature of emission under pressure in 2D MHPs containing a long alkyl chain.

3.
Molecules ; 27(3)2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35164355

ABSTRACT

We have synthetized two classes of dibenzofulvene-arylamino derivatives with an H-shape design, for a total of six different molecules. The molecular structures consist of two D-A-D units connected by a thiophene or bitiophene bridge, using diarylamino substituents as donor groups anchored to the 2,7- (Group A) and 3,6- (Group B) positions of the dibenzofulvene backbone. The donor units and the thiophene or bithiophene bridges were used as chemico-structural tools to modulate electro-optical and morphological-electrical properties. A combination of experiments, such as absorption measurements (UV-Vis spectroscopy), cyclic voltammetry, ellipsometry, Raman, atomic force microscopy, TD-DFT calculation and hole-mobility measurements, were carried out on the synthesized small organic molecules to investigate the differences between the two classes and therefore understand the relevance of the molecular design of the various properties. We found that the anchoring position on dibenzofulvene plays a crucial key for fine-tuning the optical, structural, and morphological properties of molecules. In particular, molecules with substituents in 2,7 positions (Group A) showed a lower structural disorder, a larger molecular planarity, and a lower roughness.

4.
Dalton Trans ; 50(38): 13554-13560, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34505859

ABSTRACT

A small library of dinuclear gold(I) complexes with the title ligands has been prepared, encompassing neutral, mono- and dicationic complexes. The luminescence properties of the complexes in the solid state have been evaluated, and it turns out that neutral and monocationic complexes not presenting a rigid metallamacrocyclic structure can exhibit rather strong emissions that extend towards the red region of the visible spectrum. The in vitro anticancer activity of the complexes has been also preliminarly evaluated; cytotoxicity seems to correlate with complex lipophilicity, whereas selectivity towards cancer cells can be apparently enhanced upon a judicious choice of the ligands.


Subject(s)
Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Gold/chemistry , Methane/analogs & derivatives , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Crystallography, X-Ray , Humans , Ligands , Methane/chemistry , Molecular Conformation
5.
J Phys Chem A ; 125(36): 7840-7851, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34473509

ABSTRACT

Four trigonal topology compounds with three diarylamines redox centers and dibenzofulvene as core bridge have been synthesized. Their radical cations exhibit appealing intramolecular electron transfer pathways between three redox centers, depending on their position on the core bridge. By changing such positions (on either 2,7- or 3,6-), and the length of the bridge, the control of the intramolecular electron transfer pathways was achieved through the electron self-exchange route. These processes were investigated by absorption spectroscopy, electron paramagnetic resonance spectroscopy, and (time-dependent) density functional theory calculations. Hole mobility measurements were carried out as well, to correlate the intramolecular electron transfer with the hole-transporting ability for possible applications in optoelectronic devices.

6.
Inorg Chem ; 55(13): 6532-8, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27302276

ABSTRACT

In this work, we investigate the optical and structural properties of the well-known triplet emitter bis(4',6'-difluorophenylpyridinato)-iridium(III) picolinate (FIrpic), showing that its ability to pack in two different ordered crystal structures promotes attractive photophysical properties that are useful for solid-state lighting applications. This approach allows the detrimental effects of the nonradiative pathways on the luminescence performance in highly concentrated organic active materials to be weakened. The remarkable electro-optical behavior of sky-blue phosphorescent organic light-emitting diodes incorporating crystal domains of FIrpic, dispersed into an appropriate matrix as an active layer, has also been reported as well as the X-ray diffraction, nuclear magnetic resonance, electro-ionization mass spectrometry, and scanning electron microscopy analyses of the crystalline samples. We consider this result as a crucial starting point for further research aimed at the use of a crystal triplet emitter in optoelectronic devices to overcome the long-standing issue of luminescence self-quenching.

7.
Dalton Trans ; 45(23): 9540-52, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27193490

ABSTRACT

Three novel dinuclear bis-dicarbene silver(i) complexes of general formula [Ag2(MeIm-phenylene-MeIm)2](PF6)2 (Im = imidazol-2-ylidene) were synthesized. The corresponding copper(i) and gold(i) complexes were obtained by transmetalation of the di(N-heterocyclic carbene) ligand from the silver(i) species, and both coordination geometry and stoichiometry are maintained for all three group 11 metals as expected. The photophysical properties of the Ag(i) and Au(i) complexes were also investigated and discussed; in particular the most strongly emitting complex was also studied via DFT calculations. In addition, the ruthenium(ii) and iridium(iii) complexes [RuCl(MeIm-(o-phenylene)-MeIm)(p-cym)](PF6) and [IrClCp*(MeIm-(o-phenylene)-MeIm)](PF6) were prepared and shown to present in these cases a chelating coordination of the di(N-heterocyclic carbene) ligand.

8.
Chem Commun (Camb) ; 50(97): 15297-300, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25051118

ABSTRACT

Manganese blue is a synthetic barium manganate(VI) sulphate compound that was produced from 1935 to the 1990s and was used both as a blue pigment in works of art and by conservators in the restoration of paintings. The photophysical properties of the compound are described as well as the setup needed to record the spatial distribution of the pigment in works of art.


Subject(s)
Barium/chemistry , Coloring Agents/chemistry , Manganese/chemistry , Sulfates/chemistry , Luminescence , Spectrophotometry, Ultraviolet
9.
Chem Commun (Camb) ; 50(9): 1122-4, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24322447

ABSTRACT

An organic based microcavity showing fully reversible colour tunability has been achieved for the first time. The emission output changes according to the modulation from pure photonic to polaritonic resonant modes through UV irradiation of the light-switchable matrix.


Subject(s)
Benzopyrans/chemistry , Indoles/chemistry , Nitro Compounds/chemistry , Ultraviolet Rays , Coordination Complexes/chemistry , Polymethyl Methacrylate/chemistry , Terbium/chemistry
10.
Inorg Chem ; 52(18): 10292-305, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-24003764

ABSTRACT

Charged cyclometalated (C(^)N) iridium(III) complexes with carbene-based ancillary ligands are a promising family of deep-blue phosphorescent compounds. Their emission properties are controlled primarily by the main C(^)N ligands, in contrast to the classical design of charged complexes where N(^)N ancillary ligands with low-energy π* orbitals, such as 2,2'-bipyridine, are generally used for this purpose. Herein we report two series of charged iridium complexes with various carbene-based ancillary ligands. In the first series the C(^)N ligand is 2-phenylpyridine, whereas in the second one it is 2-(2,4-difluorophenyl)-pyridine. One bis-carbene (:C(^)C:) and four different pyridine-carbene (N(^)C:) chelators are used as bidentate ancillary ligands in each series. Synthesis, X-ray crystal structures, and photophysical and electrochemical properties of the two series of complexes are described. At room temperature, the :C(^)C: complexes show much larger photoluminescence quantum yields (ΦPL) of ca. 30%, compared to the N(^)C: analogues (around 1%). On the contrary, all of the investigated complexes are bright emitters in the solid state both at room temperature (1% poly(methyl methacrylate) matrix, ΦPL 30-60%) and at 77 K. Density functional theory calculations are used to rationalize the differences in the photophysical behavior observed upon change of the ancillary ligands. The N(^)C:-type complexes possess a low-lying triplet metal-centered ((3)MC) state mainly deactivating the excited state through nonradiative processes; in contrast, no such state is present for the :C(^)C: analogues. This finding is supported by temperature-dependent excited-state lifetime measurements made on representative N(^)C: and :C(^)C: complexes.

11.
Dalton Trans ; 42(30): 10952-63, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23788178

ABSTRACT

Four novel dinuclear N-heterocyclic dicarbene gold(I) complexes with a propylene linker between the carbene moieties have been synthesized and their luminescence and electrochemical properties, together with their reactivity towards bromine oxidative addition, have been screened. All the complexes emit in the solid state in the blue-green spectral range (400-500 nm) with appreciable intensities (Φ(em) up to ≈10%). In cyclic voltammetry, the Au(I)/Au(0) peak splits at low temperature into two separate peaks relative to the couples Au(I)-Au(I)/Au(I)-Au(0) and Au(I)-Au(0)/Au(0)-Au(0), thus indicating the presence of an Au···Au interaction in the dinuclear complex. Oxidative addition of bromine affords as a major or unique product Au(II)-Au(II) complexes most likely as a consequence of the interaction between the two gold centres favoured by the propylene linker.

12.
Chemistry ; 19(24): 7771-9, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23616404

ABSTRACT

We have prepared a new borazine derivative that bears mesityl substituents at the boron centers and displays exceptional chemical stability. Detailed crystallographic and solid-state fluorescence characterizations revealed the existence of several polymorphs, each of which showed different emission profiles. In particular, a bathochromic shift is observed when going from the lower- to the higher-density crystal. Computational investigations of the conformational dynamics of borazine 1 in both the gas phase and in the solid state using molecular dynamics (MD) simulations showed that the conformation of the peripheral aryl groups significantly varies when going from an isolated molecule (in which the rings are able to flip over the 90° barrier at RT) to the crystals (in which the rotation is locked by packing effects), thus generating specific nonsymmetric intermolecular interactions in the different polymorphs. To investigate the optoelectronic properties of these materials by fabrication and characterization of light-emitting diodes (LEDs) and light-emitting electrochemical cells (LECs), borazine 1 was incorporated as the active material in the emissive layer. The current and radiance versus voltage characteristics, as well as the electroluminescence spectra reported here for the first time are encouraging prospects for the engineering of future borazine-based devices.

13.
Photochem Photobiol Sci ; 12(5): 813-22, 2013 May.
Article in English | MEDLINE | ID: mdl-23377285

ABSTRACT

We present here the synthesis of several new isoalloxazine cyclophanes containing electroactive anthraquinones linked by aliphatic chains of different lengths. Such structural changes provide different interchromophoric orientations leading to the tuning of the rate of the photoinduced electron transfer process from the anthraquinone unit towards the isoalloxazine singlet excited state. Molecular modelling studies were undertaken in order to determine the minimal energy of the proposed structures using Monte Carlo calculations (Amber, Macromodel v.8.1). The compounds have been fully characterised by NMR spectroscopy and the solid state structures of some of the macrocycles have been elucidated. The photophysical studies have been carried out in order to investigate the influence of π-π stacking on the optical properties of the macrocycles.


Subject(s)
Anthraquinones/chemistry , Flavins/chemistry , Anthraquinones/chemical synthesis , Crystallography, X-Ray , Electron Transport , Flavins/chemical synthesis , Macrocyclic Compounds/chemistry , Magnetic Resonance Spectroscopy , Molecular Conformation , Monte Carlo Method , Spectrophotometry
14.
Dalton Trans ; 42(4): 997-1010, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23108182

ABSTRACT

Four Cu(I) complexes with general formulas [Cu(N^N)(2)][BF(4)] and [(P^P)Cu(N^N)][BF(4)] were prepared, where N^N stands for 2-(2-tert-butyl-2H-tetrazol-5-yl)pyridine and P^P is a chelating diphosphine, namely bis-(diphenylphosphino)methane (dppm), bis-(diphenylphosphino)ethane (dppe) or bis[2-(diphenylphosphino)phenyl]ether (POP). In an acetonitrile medium, the Electro-Spray Ionization Mass Spectrometry (ESI-MS) determination provided the preliminary evidence for the occurrence of the dppm-containing complex as a mixture of a cationic mononuclear [Cu(N^N)(dppm)](+) species and a bis-cationic dinuclear [Cu(2)(N^N)(2)(dppm)(2)](2+)-type compound. Definitive evidence of peculiar structural features came from X-ray crystallography, which showed both the dppm- and, unexpectedly, the dppe-based heteroleptic compounds to crystallize as diphosphine-bridged Cu(I) dimers, unlike [Cu(N^N)(2)](+) and [(POP)Cu(N^N)](+) which are mononuclear species. In solutions of non-coordinating solvents, (31)P NMR studies at variable temperatures and dilution titrations confirmed that the dppm-based complex undergoes a monomer-dimer dynamic equilibrium, while the dppe-containing complex occurs as the bis-cationic dinuclear species, [Cu(2)(N^N)(2)(dppe)(2)](2+), within a concentration range comprised between 10(-2) and 10(-4) M. Differences among heteroleptic complexes might be related to the smaller natural bite angle displayed by dppm and dppe phosphine ligands (72° and 85°, respectively), with respect to that reported for POP (102°). The electrochemical features of the new species have been investigated by cyclic voltammetry. Despite the irreversible and complicated redox behaviour, which is typical for copper complexes, the reductions have been attributed to the tetrazole ligand whereas the oxidations are characterized as Cu(I/II) processes with a substantial contribution from the P^P-based ligands in the case of the heteroleptic species. All the four complexes are weakly or not luminescent in CH(2)Cl(2) solution, but heteroleptic complexes are bright green luminophores in a solid matrix, with quantum yields as high as 45% (dppm complex) even at room temperature. This makes them potential candidates as cheap emitting materials for electroluminescent devices.

15.
Chem Commun (Camb) ; 49(9): 859-61, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23228979

ABSTRACT

Treatment of 2-diphenylphosphino-6-methylpyridine (dpPyMe) with Cu(CH(3)CN)(4)BF(4) afforded the stable dinuclear Cu(I) complex [Cu(2)(µ-dpPyMe)(3)(CH(3)CN)](BF(4))(2). This compound is a weak emitter in solution, however a remarkably high emission quantum yield (46%) has been found in a rigid matrix at room temperature.

16.
Dalton Trans ; 42(10): 3357-65, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23233125

ABSTRACT

Condensation of ethylenediamine with fluorenone produces a diimine with two terminal fluorophores and a flexible central backbone, N,N'-bis-fluoren-9-ylidene-ethane-1,2-diamine (flen). The diimine reacts with [Cu(MeCN)(4)]BF(4) or CuI to produce a homoleptic compound of the stoichiometry [Cu(flen)(2)]BF(4) or [Cu(flen)(2)][CuI(2)] respectively. Both complexes emit in the red part of the spectrum, with a maximum around 720 nm and excited state lifetime of 0.2 µs in solution. The crystal structures of the complexes reveal almost an identical Cu(i)-diimine core where the predominant forces are the intramolecular π-π interactions between the fluorenone aromatic systems resulting in considerably distorted coordination environments. The negligible difference in the emission maximum between solution and solid state indicates that the vibrationally relaxed excited state, assigned as MLCT/IL, adopts a structure closely similar to the crystallographically determined one.

17.
Dalton Trans ; 42(8): 2716-23, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23223831

ABSTRACT

Based on 2,2':6',2''-terpyridine ligands (L1), five terpyridine derivatives, namely 4'-carbazol-9-yl-2,2':6',2''-terpyridine (L2), 4'-diphenylamino-2,2':6',2''-terpyridine (L3), 4'-bis(4-tert-butylphenyl)amino-2,2':6',2''-terpyridine (L4), 4'-[naphthalen-1-yl-(phenyl)amino]-2,2':6',2''-terpyridine (L5), 4'-[naphthalen-2-yl(phenyl)amino]-2,2':6',2''-terpyridine (L6) and their corresponding Re(I) complexes ReL(n)(CO)3Cl (n = 1­6) have been synthesized and characterized by elemental analysis and 1H NMR spectroscopy. The X-ray crystal structure of ReL3(CO)3Cl has also been obtained. The luminescence spectra of ReL2(CO)3Cl­ReL5(CO)3Cl, obtained in CH2Cl2 solution at room temperature, show strong dπ (Re) → π* (diimine) MLCT character (λ(max) 600 nm) and a small red shift relative to ReL1(CO)3Cl. This, confirmed by the study of the triplet energy levels of the L1­L6 ligands at low temperature (77 K rigid matrix), indicates that the introduction of electron-donating moieties on the terpyridine unit decreases the triplet levels of the ligands, leading to a reduction of the energy gap between d and π* orbitals. In the solid state, upon MLCT excitation, all the complexes show an even stronger emission and a blue spectral shift (λ(max) ∼ 550 nm) compared to those obtained in solution.


Subject(s)
Luminescence , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Pyridines/chemistry , Rhenium/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure
18.
Angew Chem Int Ed Engl ; 51(33): 8178-211, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-22887710

ABSTRACT

Higher efficiency in the end-use of energy requires substantial progress in lighting concepts. All the technologies under development are based on solid-state electroluminescent materials and belong to the general area of solid-state lighting (SSL). The two main technologies being developed in SSL are light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs), but in recent years, light-emitting electrochemical cells (LECs) have emerged as an alternative option. The luminescent materials in LECs are either luminescent polymers together with ionic salts or ionic species, such as ionic transition-metal complexes (iTMCs). Cyclometalated complexes of Ir(III) are by far the most utilized class of iTMCs in LECs. Herein, we show how these complexes can be prepared and discuss their unique electronic, photophysical, and photochemical properties. Finally, the progress in the performance of iTMCs based LECs, in terms of turn-on time, stability, efficiency, and color is presented.


Subject(s)
Electrochemical Techniques/instrumentation , Light , Luminescence , Organometallic Compounds/chemistry , Transition Elements/chemistry , Ions/chemistry , Molecular Structure
19.
Inorg Chem ; 51(4): 2263-71, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22280407

ABSTRACT

We report new bis-cyclometalated cationic iridium(III) complexes [(C(^)N)(2)Ir(CN-tert-Bu)(2)](CF(3)SO(3)) that have tert-butyl isocyanides as neutral auxiliary ligands and 2-phenylpyridine or 2-(4'-fluorophenyl)-R-pyridines (where R is 4-methoxy, 4-tert-butyl, or5-trifluoromethyl) as C(^)N ligands. The complexes are white or pale yellow solids that show irreversible reduction and oxidation processes and have a large electrochemical gap of 3.58-3.83 V. They emit blue or blue-green phosphorescence in liquid/solid solutions from a cyclometalating-ligand-centered excited state. Their emission spectra show vibronic structure with the highest-energy luminescence peak at 440-459 nm. The corresponding quantum yields and observed excited-state lifetimes are up to 76% and 46 µs, respectively, and the calculated radiative lifetimes are in the range of 46-82 µs. In solution, the photophysical properties of the complexes are solvent-independent, and their emission color is tuned by variation of the substituents in the cyclometalating ligand. For most of the complexes, an emission color red shift occurs in going from solution to neat solids. However, the shift is minimal for the complexes with bulky tert-butyl or trifluoromethyl groups on the cyclometalating ligands that prevent aggregation. We report the first example of an iridium(III) isocyanide complex that emits blue phosphorescence not only in solution but also as a neat solid.

20.
Inorg Chem ; 51(2): 799-811, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22220696

ABSTRACT

A series of homologous bis-cyclometalated iridium(III) complexes Ir(2,4-di-X-phenyl-pyridine)(2)(picolinate) (X = H, F, Cl, Br) HIrPic, FIrPic, ClIrPic, and BrIrPic has been synthesized and characterized by NMR, X-ray crystallography, UV-vis absorption and emission spectroscopy, and electrochemical methods. The addition of halogen substituents results in the emission being localized on the main cyclometalated ligand. In addition, halogen substitution induces a blue shift of the emission maxima, especially in the case of the fluoro-based analogue but less pronounced for chlorine and bromine substituents. Supported by ground and excited state theoretical calculations, we rationalized this effect in a simple manner by taking into account the σp and σm Hammett constants on both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels. Furthermore, in comparison with FIrPic and ClIrPic, the impact of the large bromine atom remarkably decreases the photoluminescence quantum yield of BrIrPic and switches the corresponding lifetime from mono to biexponential decay. We performed theoretical calculations based on linear-response time-dependent density functional theory (LR-TDDFT) including spin-orbit coupling (SOC), and unrestricted DFT (U-DFT) to obtain information about the absorption and emission processes and to gain insight into the reasons behind this remarkable change in photophysical properties along the homologous series of complexes. According to theoretical geometries for the lowest triplet state, the large halogen substituents contribute to sizable distortions of specific phenylpyridine ligands for ClIrPic and BrIrPic, which are likely to play a role in the emissive and nonradiative properties when coupled with the heavy-atom effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...