Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 17(7): e13739, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948538

ABSTRACT

The Seychelles magpie-robin's (SMR) five island populations exhibit some of the lowest recorded levels of genetic diversity among endangered birds, and high levels of inbreeding. These populations collapsed during the 20th century, and the species was listed as Critically Endangered in the IUCN Red List in 1994. An assisted translocation-for-recovery program initiated in the 1990s increased the number of mature individuals, resulting in its downlisting to Endangered in 2005. Here, we explore the temporal genomic erosion of the SMR based on a dataset of 201 re-sequenced whole genomes that span the past ~150 years. Our sample set includes individuals that predate the bottleneck by up to 100 years, as well as individuals from contemporary populations established during the species recovery program. Despite the SMR's recent demographic recovery, our data reveal a marked increase in both the genetic load and realized load in the extant populations when compared to the historical samples. Conservation management may have reduced the intensity of selection by increasing juvenile survival and relaxing intraspecific competition between individuals, resulting in the accumulation of loss-of-function mutations (i.e. severely deleterious variants) in the rapidly recovering population. In addition, we found a 3-fold decrease in genetic diversity between temporal samples. While the low genetic diversity in modern populations may limit the species' adaptability to future environmental changes, future conservation efforts (including IUCN assessments) may also need to assess the threats posed by their high genetic load. Our computer simulations highlight the value of translocations for genetic rescue and show how this could halt genomic erosion in threatened species such as the SMR.

2.
Ecol Evol ; 5(23): 5499-508, 2015 12.
Article in English | MEDLINE | ID: mdl-27069601

ABSTRACT

Understanding the extent of morphological variation in the wild population of Aldabra giant tortoises is important for conservation, as morphological variation in captive populations has been interpreted as evidence for lingering genes from extinct tortoise lineages. If true, this could impact reintroduction programmes in the region. The population of giant tortoises on Aldabra Atoll is subdivided and distributed around several islands. Although pronounced morphological variation was recorded in the late 1960s, it was thought to be a temporary phenomenon. Early researchers also raised concerns over the future of the population, which was perceived to have exceeded its carrying capacity. We analyzed monthly monitoring data from 12 transects spanning a recent 15-year period (1998-2012) during which animals from four subpopulations were counted, measured, and sexed. In addition, we analyzed survival data from individuals first tagged during the early 1970s. The population is stable with no sign of significant decline. Subpopulations differ in density, but these differences are mostly due to differences in the prevailing vegetation type. However, subpopulations differ greatly in both the size of animals and the degree of sexual dimorphism. Comparisons with historical data reveal that phenotypic differences among the subpopulations of tortoises on Aldabra have been apparent for the last 50 years with no sign of diminishing. We conclude that the giant tortoise population on Aldabra is subject to varying ecological selection pressures, giving rise to stable morphotypes in discrete subpopulations. We suggest therefore that (1) the presence of morphological differences among captive Aldabra tortoises does not alone provide convincing evidence of genes from other extinct species; and (2) Aldabra serves as an important example of how conservation and management in situ can add to the scientific value of populations and perhaps enable them to better adapt to future ecological pressures.

SELECTION OF CITATIONS
SEARCH DETAIL
...