Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e21793, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027625

ABSTRACT

In this work, it is presented a first approach of a mathematical and kinetic analysis for improving the decoloration and further degradation process of an azo dye named acid red 27 (AR27), by means of a novel microbial consortium formed by the fungus Trametes versicolor and the bacterium Pseudomonas putida. A multivariate analysis was carried out by simulating scenarios with different operating conditions and developing a specific mathematical model based on kinetic equations describing all stages of the biological process, from microbial growth and substrate consuming to decoloration and degradation of intermediate compounds. Additionally, a sensitivity analysis was performed by using a factorial design and the Response Surface Method (RSM), for determining individual and interactive effects of variables like, initial glucose concentration, initial dye concentration and the moment in time for bacterial inoculation, on response variables assessed in terms of the minimum time for: full decoloration of AR27 (R1 = 2.375 days); maximum production of aromatic metabolites (R2 = 1.575 days); and full depletion of aromatic metabolites (R3 = 12.9 days). Using RSM the following conditions improved the biological process, being: an initial glucose concentration of 20 g l-1, an initial AR27 concentration of 0.2 g l-1 and an inoculation moment in time of P. putida at day 1. The mathematical model is a feasible tool for describing AR27 decoloration and its further degradation by the microbial consortium of T. versicolor and P. putida, this model will also work as a mathematical basis for designing novel bio-reaction systems than can operate with the same principle of the described consortium.

2.
Lett Appl Microbiol ; 57(6): 540-6, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23941495

ABSTRACT

UNLABELLED: The behaviours of Shiga toxin-producing Escherichia coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) strains on raw carrots at 3 ± 1 and 30 ± 1°C, and in unpasteurized carrot juice at 3 ± 1, 12 ± 1, 20 ± 1, 30 ± 1°C and 37 ± 1°C were determined. Raw carrots were purchased in a local market. Fresh juice was obtained from raw carrots in the laboratory. On whole carrots stored at 30 ± 1 or 3 ± 1°C, no growth was observed for any of the diarrheagenic E. coli pathotype (DEPs) strains studied. After 15 days at 30 ± 1°C, the tested DEPs had decreased from an initial inoculum level of approximately 6 log colony-forming units (CFU) to approximately 3·5 log CFU on whole carrots, while at 3 ± 1°C, they decreased from approximately 2·4 log to 1·6 log CFU. All these DEPs grew in fresh carrot juice at 12 ± 1, 20 ± 1, 30 ± 1 and 37 ± 1°C, reaching counts of approximately 4·2 log, 5·8 log, 6·7 log and 7·5 log CFU ml(-1) , respectively, after 24 h. At 3 ± 1°C, the DEP growth was inhibited at least during 7 days. Thus, storage of carrot juice at unrefrigerated temperatures can result in DEP growth to levels likely to represent a risk to consumers. SIGNIFICANCE AND IMPACT OF THE STUDY: The information presented shows the potential of Shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains for survival on carrots and growth in carrot juice at warmer temperatures. The information can help food processors in plants and restaurants understand the importance of the implementation of hazard analysis and critical control point (HACCP) strategies for preventing potential diarrheagenic E. coli pathotypes (DEPs) contamination and growth in carrot juice. This is the first report regarding the behaviour these DEPs on carrots and in carrot juice.


Subject(s)
Beverages/microbiology , Daucus carota/microbiology , Escherichia coli/growth & development , Daucus carota/chemistry , Escherichia coli/classification , Escherichia coli/isolation & purification , Food Contamination/analysis , Food Handling , Microbial Viability
SELECTION OF CITATIONS
SEARCH DETAIL
...