Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 90(2): 023303, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30831735

ABSTRACT

The Hybrid Photodetector (HPD) is a hybrid unit with a single accelerating gap between a common photocathode and an array of PIN diodes. Customised HPDs with 19 channels were used to detect scintillation light from hadron calorimeter in the Compact Muon Solenoid (CMS) experiment. In this paper, we present results on radiation damage studies carried out on the used HPDs in the outer hadron (HO) and the end-cap hadron (HE) calorimeter of the CMS experiment operating at CERN. The calorimeter is made of alternating layers of scintillating tiles and metals, such as brass or iron. The scintillating light was transmitted to the HPDs by means of optical fibres. Due to excessive exposure to scintillation light and ionising radiation during data taking at the Large Hadron Collider, the performance of the HPDs was expected to degrade significantly in the HE detector. Independent studies on radiation damage of these used photosensors were important to assess the degradation in the performance of the calorimeter. Microscopic scans of relative photon detection efficiencies for two HPDs (one each from HO and HE detector) were made using micron resolution optical scanner. The scanner was specially designed and built for microscopic characterisation of photosensors. Imprints of each fibre (∼1 mm in diameter) on the photocathode with varying damage within the same pixel of the HPD were observed. The localised damage of the photocathode was determined to vary with the amount of scintillation (or calibration) light transmitted by optical fibres to the HPD.

2.
Opt Lett ; 43(21): 5383-5386, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30383013

ABSTRACT

In this Letter, we experimentally demonstrate a terahertz (THz) whispering gallery mode (WGM) sensor based on a sapphire WGM resonator. The fundamental mode at 129.49 GHz with a Q-factor of 4.63×103 is used to study its sensitivity to adsorbed molecules. The efficiency of our sensor to detect rhodamine 6G dye molecules in a polyvinyl alcohol matrix at room temperature has been manifested, and a detection sensitivity of 25 parts per million has been achieved. Also, we report an analytical approach based on coupled-mode theory between the waveguide mode and the spherical resonator mode to evaluate the absorption coefficient of the adsorbed molecule on the resonator. The model is modified to evaluate optical constants of materials. The results obtained have been verified by continuous-wave THz transmission results. The results are of importance in sensing, metrology, and material characterization.

3.
Rev Sci Instrum ; 87(1): 015114, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26827360

ABSTRACT

Silicon Photo-Multipliers (SiPMs) are increasingly becoming popular for discrete photon counting applications due to the wealth of advantages they offer over conventional photo-detectors such as photo-multiplier tubes and hybrid photo-diodes. SiPMs are used in variety of applications ranging from high energy physics and nuclear physics experiments to medical diagnostics. The gain of a SiPM is directly proportional to the difference between applied and breakdown voltage of the device. However, the breakdown voltage depends critically on the ambient temperature and has a large temperature co-efficient in the range of 40-60 mV/°C resulting in a typical gain variation of 3%-5%/°C [Dinu et al., in IEEE Nuclear Science Symposium, Medical Imaging Conference and 17th Room Temperature Semiconductor Detector Workshop (IEEE, 2010), p. 215]. We plan to use the SiPM as a replacement for PMT in the cosmic ray experiment (GRAPES-3) at Ooty [Gupta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 540, 311 (2005)]. There the SiPMs will be operated in an outdoor environment subjected to temperature variation of about 15 °C over a day. A gain variation of more than 50% was observed for such large variations in the temperature. To stabilize the gain of the SiPM under such operating conditions, a low-cost, multi-channel programmable power supply (0-90 V) was designed that simultaneously provides the bias voltage to 16 SiPMs. The programmable power supply (PPS) was designed to automatically adjust the operating voltage for each channel with a built-in closed loop temperature feedback mechanism. The PPS provides bias voltage with a precision of 6 mV and measures the load current with a precision of 1 nA. Using this PPS, a gain stability of 0.5% for SiPM (Hamamatsu, S10931-050P) has been demonstrated over a wide temperature range of 15 °C. The design methodology of the PPS system, its validation, and the results of the tests carried out on the SiPM is presented in this article. The proposed design also has the capability of gain stabilization of devices with non-linear thermal response.

4.
Phys Rev Lett ; 110(3): 037402, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23373950

ABSTRACT

An in-plane spin-photon interface is essential for the integration of quantum dot spins with optical circuits. The optical dipole of a quantum dot lies in the plane and the spin is optically accessed via circularly polarized selection rules. Hence, a single waveguide, which can transport only one in-plane linear polarization component, cannot communicate the spin state between two points on a chip. To overcome this issue, we introduce a spin-photon interface based on two orthogonal waveguides, where the polarization emitted by a quantum dot is mapped to a path-encoded photon. We demonstrate operation by deducing the spin using the interference of in-plane photons. A second device directly maps right and left circular polarizations to antiparallel waveguides, surprising for a nonchiral structure but consistent with an off-center dot.

SELECTION OF CITATIONS
SEARCH DETAIL
...