Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 8(11)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36422016

ABSTRACT

Crop output is directly impacted by infections, with fungi as the major plant pathogens, making accurate diagnosis of these threats crucial. Developing technology and multidisciplinary approaches are turning to genomic analyses in addition to traditional culture methods in diagnostics of fungal plant pathogens. The metagenomic next-generation sequencing (mNGS) method is preferred for genotyping identification of organisms, identification at the species level, illumination of metabolic pathways, and determination of microbiota. Moreover, the data obtained so far show that this new approach is promising as an emerging new trend in fungal disease detection. Another approach covered by mNGS technologies, known as metabarcoding, enables use of specific markers specific to a genetic region and allows for genotypic identification by facilitating the sequencing of certain regions. Although the core concept of mNGS remains constant across applications, the specific sequencing methods and bioinformatics tools used to analyze the data differ. In this review, we focus on how mNGS technology, including metabarcoding, is applied for detecting fungal pathogens and its promising developments for the future.

2.
J Fungi (Basel) ; 8(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35628729

ABSTRACT

Antifungal efficacy of Azotobacter salinestris against trichothecene-producing Fusarium spp. was investigated in maize, sorghum, and wheat. The three cereals were subjected to four treatments as control (T1), Fusarium alone (T2), combination of Fusarium and A. salinestris treatment (T3), and only A. salinestris (T4). All the treatments were evaluated for total mass of seedlings, root and shoot length, seed germination, and vigor index (VI), and extent of rhizoplane colonization by A. salinestris was investigated. Further, greenhouse studies were conducted to learn the efficacy of A. salinestris in vivo conditions. Antifungal efficacy was tested by the dual-culture method which resulted in significant reduction in Fusarium growth. Infection by Fusarium was reduced up to 50% in treated cereals such as maize, sorghum, and wheat, and there was also significant increase in seedling mass in the three hosts. Maize showed the highest VI (1859.715), followed by sorghum (1470.84), and wheat (2804.123) with A. salinestris treatment. In addition, seed germination was enhanced to 76% in maize, 69% in sorghum, and 68% in wheat, respectively. Efficacy of rhizoplane colonization showed successful isolation of A. salinestris with high CFU rate, and furthermore, significant colonization inhibition by Fusarium spp. was observed. In the greenhouse conditions, on the 45th day of the experimental set-up, the highest shoot length/root length recorded in maize was 155.70/70.0 cm, in sorghum 165.90/48.0 cm, and in wheat 77.85/56.0 cm, and the maximum root mass recorded was 17.53 g in maize, 4.52 g in sorghum, and 1.90 g in wheat. Our present study showed that seed treatment by A. salinestris, may be used as an alternate biocontrol method against Fusarium infection in maize, sorghum, and wheat.

3.
J Fungi (Basel) ; 7(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34575814

ABSTRACT

Fusarium verticillioides is the most predominant fungal phytopathogen of cereals and it is posing great concern from a global perspective. The fungus is mainly associated with maize, rice, sorghum, wheat, sugarcane, banana, and asparagus and causes cob, stalk, ear, root, crown, top, and foot rot. F. verticillioides produces fumonisins as the major secondary metabolite along with trace levels of beauvericin, fusaric acid, fusarin C, gibberiliformin, and moniliformin. Being a potential carcinogen, fumonisins continue to receive major attention as they are common contaminants in cereals and its processed food products. The importance of elimination of F. verticillioides growth and its associated fumonisin from cereals cannot be overemphasized considering the significant health hazards associated with its consumption. Physical and chemical approaches have been shown to reduce fumonisin B1 concentrations among feeds and food products but have proved to be ineffective during the production process. Hence, biological control methods using microorganisms, plant extracts, antioxidants, essential oils, phenolic compounds, and other advanced technologies such as growing disease-resistant crops by applying genetic engineering, have become an effective alternative for managing F. verticillioides and its toxin. The different methods, challenges, and concerns regarding the biocontrol of F. verticillioides and production of fumonisin B1 have been addressed in the present review.

4.
J Fungi (Basel) ; 6(4)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371318

ABSTRACT

Aspergillus species are known to cause damage to food crops and are associated with opportunistic infections in humans. In the United States, significant losses have been reported in peanut production due to contamination caused by the Aspergillus species. This study evaluated the antifungal effect and anti-aflatoxin activity of selected plant-based essential oils (EOs) against Aspergillus flavus in contaminated peanuts, Tifguard, runner type variety. All fifteen essential oils, tested by the poisoned food technique, inhibited the growth of A. flavus at concentrations ranging between 125 and 4000 ppm. The most effective oils with total clearance of the A. flavus on agar were clove (500 ppm), thyme (1000 ppm), lemongrass, and cinnamon (2000 ppm) EOs. The gas chromatography-mass spectrometry (GC-MS) analysis of clove EO revealed eugenol (83.25%) as a major bioactive constituent. An electron microscopy study revealed that clove EO at 500 ppm caused noticeable morphological and ultrastructural alterations of the somatic and reproductive structures. Using both the ammonia vapor (AV) and coconut milk agar (CMA) methods, we not only detected the presence of an aflatoxigenic form of A. flavus in our contaminated peanuts, but we also observed that aflatoxin production was inhibited by clove EO at concentrations between 500 and 2000 ppm. In addition, we established a correlation between the concentration of clove EO and AFB1 production by reverse-phase high-performance liquid chromatography (HPLC). We demonstrate in our study that clove oil could be a promising natural fungicide for an effective bio-control, non-toxic bio-preservative, and an eco-friendly alternative to synthetic additives against A. flavus in Georgia peanuts.

5.
Probiotics Antimicrob Proteins ; 11(1): 55-64, 2019 03.
Article in English | MEDLINE | ID: mdl-29064057

ABSTRACT

The study aims to evaluate the cell-free supernatant (CFS) from Lactobacillus plantarum strain MYS44 against the growth and aflatoxin production by Aspergillus parasiticus MTCC 411. Standard in vitro techniques revealed the potential antifungal activity of CFS of LpMYS44. In poison food technique, it was observed that 6% CFS of LpMYS44 retarded maximum growth. The inhibition of A. parasiticus on peanuts confirmed the ability of CFS of LpMYS44 for biopreservation. Further, CFS of LpMYS44 was purified by chromatography and analyzed by GC-MS. The major antifungal compounds were oleic acid, octanoic acid, butanamide, and decanoic acid derivatives. Twofold concentrated 80 µL of CFS was found to be minimum inhibitory concentration (MIC) of CFS of LpMYS44. CFS of LpMYS44 suppressed the germination and growth of the spores of A. parasiticus. Microscopic observation showed that CFS of LpMYS44 severely affected the hyphal wall of A. parasiticus by the leakage of cytoplasmic content leading to complete destruction. Acidic condition is favorable for CFS of LpMYS44 activity. In poultry feed sample, CFS of LpMYS44 reduced the aflatoxin B1 content by 34.2%, reflecting its potentiality to use as detoxification agent. The multiple antifungal components in CFS of LpMYS44 exhibited antifungal properties against aflatoxigenic A. parasiticus resulted in causing overall morphological changes. Furthermore, we also observed the biopreservative ability of CFS of LpMYS44 against A. parasiticus and AFB1 reduction in for poultry feed. This study makes a contribution to using CFS of LpMYS44 and their applications in food and feed as pretreatment against aflatoxigenic A. parasiticus to reduce or eliminate AFB1 and maybe other aflatoxins, produced by other Aspergillus spp.


Subject(s)
Aflatoxin B1/antagonists & inhibitors , Antifungal Agents/pharmacology , Aspergillus/drug effects , Lactobacillus plantarum , Animal Feed/microbiology , Animals , Antifungal Agents/isolation & purification , Arachis/microbiology , Aspergillus/pathogenicity , Aspergillus/physiology , Cell-Free System , Food Preservation , Hydrogen-Ion Concentration , Microbial Sensitivity Tests , Poultry
6.
J Food Prot ; 74(4): 676-80, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21477487

ABSTRACT

Stenocarpella maydis is the most prevalent ear rot pathogen of maize (Zea mays) in South Africa, the United States, and other countries. Infection and ultrastructure of propagules of S. maydis in maize were observed by light, scanning, and transmission electron microscopy. Two-celled conidia of S. maydis were found in the tissues of husk and kernels. Mycelia colonized inter- and intracellularly in the host tissues. Pycnidia were found abundantly inside the seed tissues of susceptible cultivars; within a single seed, pycnidia propagated preferentially in embryonic tissues. A pycnidium is composed of morphologically different resting spores mingled with some degraded organelles of the host cell. In this study, various enzymatic activities led to cell wall degradation, lacunae in endosperm tissues, and disrupted organelles in susceptible cultivars. In contrast, callose deposition surrounding fungal hyphae was clearly visible in resistant cultivars. Heavy infection was detected by maceration, even though there was no apparent symptom on the seed coat. The saprophytic nature and structurally different forms of propagules could contribute to a long-term survival of this pathogen in the field and during grain storage. Furthermore, S. maydis might pose a threat of diplodiatoxin intoxication to human and domestic animals when infected maize seeds are consumed.


Subject(s)
Ascomycota/ultrastructure , Plant Diseases/microbiology , Zea mays/microbiology , Food Contamination/analysis , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Scanning Transmission , Spores, Fungal/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...