Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202401390, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862385

ABSTRACT

The synthesis of sulfoxide-functionalized NHC ligand precursors were carried out by direct and mild oxidation from corresponding thioether precursors with high selectivity. A series of cationic [Ru(II)(η6-p-cymene)(NHC-SO)Cl]+ complexes were obtained in excellent yields by the classical Ag2O transmetallation route. NMR analyses suggested a chelate structure for the metal complexes, and X-ray diffractometry studies of 4 complexes unambiguously confirmed the preference for the bidentate (κ2-C,S) coordination mode of the NHC-SO ligands. Interestingly, only one diastereomer, in the form of an enantiomeric pair, was observed both in 1H NMR and in the solid state for the complexes. DFT calculations showed a possible intrinsic energy difference between the two pairs of diastereomers. The calculated energy barriers suggested that inversion of the sulfoxide is only plausible from the higher energy diastereomer together with bulky substituents. Inverting the configuration at the Ru center instead shows a lower and accessible activation barrier to provide the most stable diastereomer through thermodynamic control, consistent with the observation of a single species by 1H NMR as a pair of enantiomers. All these complexes catalyse the ß-alkylation of secondary alcohols.

2.
Int J Pharm ; 641: 123071, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37244463

ABSTRACT

A growing body of experimental and clinical evidence suggests that rare cell populations, known as cancer stem cells (CSCs), play an important role in the development and therapeutic resistance of several cancers, including glioblastoma. Elimination of these cells is therefore of paramount importance. Interestingly, recent results have shown that the use of drugs that specifically disrupt mitochondria or induce mitochondria-dependent apoptosis can efficiently kill cancer stem cells. In this context, a novel series of platinum(II) complexes bearing N-heterocyclic carbene (NHC) of the type [(NHC)PtI2(L)] modified with the mitochondria targeting group triphenylphosphonium were synthesized. After a complete characterization of the platinum complexes, the cytotoxicity against two different cancer cell lines, including a cancer stem cell line, was investigated. The best compound reduced the cell viability of both cell lines by 50% in the low µM range, with an approximately 300-fold higher anticancer activity on the CSC line compared to oxaliplatin. Finally, mechanistic studies showed that the triphenylphosphonium functionalized platinum complexes significantly altered mitochondrial function and also induced atypical cell death.


Subject(s)
Antineoplastic Agents , Glioblastoma , Humans , Platinum/pharmacology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Cell Death
3.
ACS Catal ; 13(5): 3201-3210, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36910871

ABSTRACT

The [2 + 2 + 2] cycloaddition of 1,5-bisallenes and alkynes under the catalysis of Rh(I) with hemilabile thioether-functionalized N-heterocyclic carbene ligands is described. This protocol effectively provides an entry to different trans-5,6-fused bicyclic systems with two exocyclic double bonds in the cyclohexene ring. The process is totally chemoselective with the two internal double bonds of the 1,5-bisallenes being involved in the cycloaddition. The complete mechanism of this transformation as well as the preference for the trans-fusion over the cis-fusion has been rationalized by density functional theory calculations. The reaction follows a typical [2 + 2 + 2] cycloaddition mechanism. The oxidative addition takes place between the alkyne and one of the allenes and it is when the second allene is inserted into the rhodacyclopentene that the trans-fusion is generated. Remarkably, the hemilabile character of the sulfur atom in the N-heterocyclic carbene ligand modulates the electron density in key intermediates, facilitating the overall transformation.

4.
Chirality ; 33(10): 602-609, 2021 10.
Article in English | MEDLINE | ID: mdl-34318545

ABSTRACT

We report on the polymerization/depolymerization of chiral metallo-supramolecular assembly by CuI /CuII redox change. By combining a monotopic enantiopure ligand with a ditopic ligand of opposite configuration, ML2 -type complexes are generated with chiral self-recognition or self-discrimination depending on the oxidation state of copper. In presence of CuI , the formation of heterochiral complexes is favored, thus generating dinuclear species whereas CuII advocates for the formation of homochiral species, namely, a mixture of mononuclear species and metallo-supramolecular polymeric species. Thus, cyclic voltammetry was used to study such a chirality-induced stimulus sensitive polymerization/depolymerization process.

5.
Chirality ; 32(10): 1250-1256, 2020 10.
Article in English | MEDLINE | ID: mdl-32691914

ABSTRACT

Asymmetric amplification is a phenomenon that is believed to play a key role in the emergence of homochirality in life. In asymmetric catalysis, theoretical and experimental models have been investigated to provide an understanding of how chiral amplification is possible, in particular based on non-linear effects. Interestingly, it has been proposed a quarter century ago that chiral catalysts, when not enantiopure might even be more enantioselective than their enantiopure counterparts. We show here that such hyperpositive non-linear effect in asymmetric catalysis is indeed possible. An in-depth study into the underlying mechanism was carried out, and the scheme we derive differs from the previous proposed models.

6.
Molecules ; 25(14)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32660104

ABSTRACT

A series of octahedral platinum(IV) complexes functionalized with both N-heterocyclic carbene (NHC) ligands were synthesized according to a straightforward procedure and characterized. The coordination sphere around the metal was varied, investigating the influence of the substituted NHC and the amine ligand in trans position to the NHC. The influence of those structural variations on the chemical shift of the platinum center were evaluated by 195Pt NMR. This spectroscopy provided more insights on the impact of the structural changes on the electronic density at the platinum center. Investigation of the in vitro cytotoxicities of representative complexes were carried on three cancer cell lines and showed IC50 values down to the low micromolar range that compare favorably with the benchmark cisplatin or their platinum(II) counterparts bearing NHC ligands.


Subject(s)
Antineoplastic Agents , Methane/analogs & derivatives , Neoplasms/drug therapy , Organoplatinum Compounds , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Methane/chemistry , Nuclear Magnetic Resonance, Biomolecular , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , PC-3 Cells
7.
Chem Commun (Camb) ; 56(61): 8703-8706, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32613963

ABSTRACT

We investigated the selective formation of homoleptic and heteroleptic metal complexes controlled by means of the chiral molecular instruction of the ligand and the coordination geometry of the metal. Our results showed that chiral self-recognition or self-discrimination may be induced by the CuI/CuII redox transition using cyclic voltammetry. The further use of chiral ditopic ligands led to metallo-supramolecular copolymers with stimuli-responsive controlled arrangement.

8.
Dalton Trans ; 49(10): 3243-3252, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32096513

ABSTRACT

A series of cationic Ru(ii)(η6-p-cymene) complexes with thioether-functionalised N-heterocyclic carbene ligands have been prepared and fully characterized. Steric and electronic influence of the R thioether substituent on the coordination of the sulfur atom was investigated. The molecular structure of three of them has been determined by means of X-ray diffractrometry and confirmed the bidentate (κ2-C,S) coordination mode of the ligand. Interestingly, only a single diastereomer, as an enantiomeric couple, was observed in the solid state for complexes 1c, 1i and 1j. DFT calculations established a low energy inversion barrier between the two diastereomers through a sulfur pyramidal inversion pathway with R donating group while a dissociative/associative mechanism is more likely with R substituents that contain electron withdrawing group, thus suggesting that the only species observed by the 1H-NMR correspond to an average resonance position of a fluxional mixtures of isomers. All these complexes were found to catalyse the oxydant-free double dehydrogenation of primary amine into nitrile. Ru complex bearing NHC-functionalised S-tBu group was further investigated in a wide range of amines and was found more selective for alkyl amine substrates than for benzylamine derivatives. Finally, preliminary results of the biological effects on various human cancer cells of four selected Ru complexes are reported.


Subject(s)
Coordination Complexes/chemistry , Ruthenium/chemistry , Catalysis , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Humans , Ligands , Ruthenium/pharmacology , Sulfides/chemistry
9.
Chem Sci ; 11(46): 12453-12463, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-34094450

ABSTRACT

The chiral ligand N-methylephedrine (NME) was found to catalyse the addition of dimethylzinc to benzaldehyde in an enantiodivergent way, with a monomeric and a homochiral dimeric complex both catalysing the reaction at a steady state and giving opposite product enantiomers. A change in the sign of the enantiomeric product was thus possible by simply varying the catalyst loading or the ligand ee, giving rise to an enantiodivergent non-linear effect. Simulations using a mathematical model confirmed the possibility of such behaviour and showed that this can lead to situations where a reaction gives racemic products, although the system is composed only of highly enantioselective individual catalysts. Furthermore, depending on the dimer's degree of participation in the catalytic conversion, enantiodivergence may or may not be observed experimentally, which raises questions about the possibility of enantiodivergence in other monomer/dimer-catalysed systems. Simulations of the reaction kinetics showed that the observed kinetic constant k obs is highly dependent on user-controlled parameters, such as the catalyst concentration and the ligand ee, and may thus vary in a distinct way from one experimental setup to another. This unusual dependency of k obs allowed us to confirm that a previously observed U-shaped catalyst order vs. catalyst loading-plot is linked to the simultaneous catalytic activity of both monomeric and dimeric complexes.

10.
ACS Omega ; 4(2): 2676-2683, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459503

ABSTRACT

We report an extensive study on the coordination behavior of chiral ditopic bridging ligands, which lead to metallosupramolecular polymers in the presence of Zn(II) and Cu(II) in solution. With the help of UV-vis and circular dichroism spectroscopies, we show that the metallopolymer sequence can be controlled by chirality and by the choice of the metal ion. Although the formation of a block metallopolymer proceeds through the assembly of homoleptic complexes, an alternate metallopolymer may be obtained only when heteroleptic complexes are formed. This demonstrates how the prevalent coordination geometries at metal centers may be used to control the sequences of the metallopolymers.

11.
Chemistry ; 25(58): 13271-13274, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31287194

ABSTRACT

A dehydrogenation of primary amine to give the corresponding nitrile under oxidant- and base-free conditions catalysed by simple [Ru(p-cym)Cl2 ]2 with no extra ligand is reported. The system is highly selective for alkyl amines, whereas benzylamine derivatives gave the nitrile product together with the imine in a ratio ranging from 14:1 to 4:1 depending on the substrate. Preliminary mechanistic investigations have been performed to identify the key factors that govern the selectivity.

12.
RSC Adv ; 9(47): 27250-27256, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-35529201

ABSTRACT

A hydrophosphination reaction that is free of base, acid and catalyst, using only 2-methyltetrahydrofuran as additive has been performed. A new family of mono-, di-, tri- and tetra-phosphines compounds are obtained in good to excellent yields by adding diphenylphosphine to alkenes, mono- and polyfunctional acrylics (based on acrylate and methacrylate motifs) and acrylamide substrates. Addition of four equivalent of bio-mass derived 2-MeTHF into the reaction media improves both conversion and time of the reaction and reduces the sensitivity of the reactants over oxidation. This simple, straightforward and atom-economic method respects the principles of Green Chemistry. Furthermore, in each case this transformation shows an exclusive regioselectivity towards the anti-Markovnikov products.

13.
Dalton Trans ; 47(47): 17134-17145, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30467568

ABSTRACT

Neutral nickel-N-heterocyclic carbene complexes, (κ1-C)-[NiCpBr{R-NHC-(CH2)2SR'}] [Cp = η5-C5H5; R-NHC-(CH2)2SR' = 1-mesityl-3-[2-(tert-butylthio)ethyl]- (1a), 1-mesityl-3-[2-(phenylthio)ethyl]- (1b), 1-benzyl-3-[2-(tert-butylthio)ethyl]- (1c), 1-benzyl-3-[2-(phenylthio)ethyl]-imidazol-2-ylidene (1d)], which bear a N-bound thioether side arm, were prepared by the reaction of nickelocene with the corresponding imidazolium bromides [R-NHC-(CH2)2SR'·HBr] (a-d), via conventional or microwave heating. The 1H NMR spectra of the benzyl-substituted species 1c and 1d showed signals for diastereotopic NCH2CH2S protons at room temperature. However, structural studies established the absence of coordination of the sulphur atom in the solid state, and solvent DFT calculations showed that bromide displacement by sulphur is an unfavourable process (ΔG = +13.5 kcal mol-1 for 1d), thereby suggesting that the observed disatereotopicity is more likely due to significant steric congestion rather than to a possible C,S-chelation in solution. Treatment of these complexes with KPF6 in tetrahydrofuran (THF) led to bromide abstraction to afford the cationic complexes [NiCp{R-NHC-(CH2)2SR'}](PF6) (2a-c). Alternatively, 2a-c could also be prepared by the direct reaction of nickelocene with the corresponding imidazolium hexafluorophosphate salts [R-NHC-(CH2)2SR'·HPF6]. Inversely to the neutral species, whereas X-ray crystallography established C,S-chelation in the solid state, the 1H NMR spectra (CDCl3, CD2Cl2, or thf-d8) at room temperature showed no diastereotopic NCH2CH2S protons, thus suggesting the possible displacement of the sulphur atom by the respective solvents and/or very fast sulphur inversion. DFT calculations established a low energy inversion process in all cases (+9 ≤ΔG‡≤ +13 kcal mol-1) as well as a favourable solvent coordination process (ΔG‡≈ +11 kcal mol-1; ΔG≈-7 kcal mol-1) with a solvent such as THF, thus suggesting that sulphur inversion and/or solvent coordination can both account for the absence of diastereotopy at room temperature, depending on the solvent. While all complexes catalysed the hydrosilylation of benzaldehyde in the absence of any additive, the cationic C,S-chelated complexes 2 proved more active than the sterically constrained neutral species 1. In particular, 2c proved to be the most active pre-catalyst and its catalytic charge could be lowered down to 2 mol% with PhSiH3 as the hydrogen source.

14.
Dalton Trans ; 47(33): 11491-11502, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30074048

ABSTRACT

Platinum(iv) complexes stabilized by N-heterocyclic carbene ligands of the type [(NHC)PtX4L], where L is a neutral nitrogen-based ligand and X is a halide anion (Br, Cl), were prepared by using straightforward and high-yielding synthetic routes and the scope was extended to amphiphilic derivatives. The complexes were fully characterized and the molecular structure of the three derivatives was determined by single-crystal X-ray analyses. The complexes demonstrated in vitro antiproliferative activities against several cancer cell lines. In particular, a representative Pt(iv) complex, namely, [(NHC)PtCl4(pyridine)], displayed efficient antiproliferative activity against cisplatin-resistant cancer cells. These results were correlated with their physicochemical properties, namely, solubility, stability and redox behavior by means of UV-vis spectroscopy, NMR or cyclic voltammetry, whereas in DMSO/water, these Pt(iv) complexes transform into biologically less active cis[(NHC)PtX2(DMSO)] species, in the presence of a bioreductant such as glutathione which quickly leads to the formation of a biologically active trans[(NHC)PtX2L] complex. Overall, these data show that NHC-Pt(iv) compounds are good candidates as anti-cancer prodrugs.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Heterocyclic Compounds/chemistry , Methane/analogs & derivatives , Organoplatinum Compounds/chemical synthesis , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chemistry Techniques, Synthetic , Dimethyl Sulfoxide/chemistry , Drug Resistance, Neoplasm/drug effects , Drug Stability , Glutathione/metabolism , Humans , Methane/chemistry , Models, Molecular , Molecular Conformation , Organoplatinum Compounds/chemistry , Oxidation-Reduction , Water/chemistry
15.
Chimia (Aarau) ; 70(1-2): 8-19, 2016.
Article in English | MEDLINE | ID: mdl-26931212

ABSTRACT

The secondary phosphine oxides are known to exist in equilibrium between the pentavalent phosphine oxides (SPO) and the trivalent phosphinous acids (PA). This equilibrium can be displaced in favour of the trivalent tautomeric form upon coordination to late transition metals. This tutorial review provides the state of the art of the use of secondary phosphine oxides as pre-ligands in transition metal-catalysed reactions. Using a combination of SPOs and several metals such as Pd, Pt, Ru, Rh and Au, a series of effective and original transformations have been obtained and will be discussed here.


Subject(s)
Metals/chemistry , Phosphines/chemistry , Catalysis , Ligands , Models, Molecular , Oxides/chemistry
16.
Org Lett ; 18(2): 240-3, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26709440

ABSTRACT

Reactions of α-diazo-ß-ketoesters with cyclic ketones, lactones, and carbonates are reported. Thanks to the combined use of salt [CpRu(CH3CN)3][BArF] and 1,10-phenanthroline as catalyst for the diazo decomposition, effective and practical syntheses of spiro bicyclic ketals, orthoesters, and orthocarbonates are afforded.

17.
Chimia (Aarau) ; 68(4): 243-7, 2014.
Article in English | MEDLINE | ID: mdl-24983607

ABSTRACT

Using α-diazo-ß-ketoesters as reagents and combinations of CpRu fragments and diimine ligands as catalysts, a series of original transformations have been obtained that can be rationalized by the formation of metal carbenes and metal-bound ylide intermediates. Interesting 1,3-dioxole, enol-acetal and 1,4-dioxene motifs are obtained directly when the reactive mixture is reacted in presence of aldehydes or ketones, THF and epoxides.

18.
Angew Chem Int Ed Engl ; 53(24): 6140-4, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24802707

ABSTRACT

Rather than lead to the usual deoxygenation pathway, metal carbenes derived from α-diazo-ß-ketoesters undergo three-atom insertions into epoxides using a combination of 1,10-phenanthroline and [CpRu(CH3CN)3][BAr(F)] as the catalyst. Original 1,4-dioxene motifs are obtained as single regio- and stereoisomers. A perfect syn stereochemistry (retention, e.r. up to 97:3) is observed for the ring opening, which behaves as an S(N)1-like transformation.

20.
Chemistry ; 17(45): 12729-40, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-21956620

ABSTRACT

We report the study of the net donating ability of monodentate and bidentate P ligands stemming from secondary phosphine oxides (SPOs). We experimentally measured and/or calculated the frequencies of CO stretching modes of various metal carbonyl complexes. The inferred electronic properties of the ligands span an unprecedented range, going from π-accepting phosphite-like compounds, to extremely electron-donating ligands outclassing N-heterocyclic carbenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...