Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 41(6): 1265-1273, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36642628

ABSTRACT

A malaria vaccine with high efficacy and capable of inducing sterile immunity against malaria within genetically diverse populations is urgently needed to complement ongoing disease control and elimination efforts. Parasite-specific IFN-γ and granzyme B-secreting CD8 + T cells have been identified as key mediators of protection and the rapid identification of malaria antigen targets that elicit these responses will fast-track the development of simpler, cost-effective interventions. This study extends our previous work which used peripheral blood mononuclear cells (PBMCs) from adults with life-long exposure to malaria parasites to identify immunodominant antigen-specific peptide pools composed of overlapping 15mer sequences spanning full length proteins of four malarial antigens. Our current study aimed to identify CD8 + T cell epitopes within these previously identified positive peptide pools. Cryopreserved PBMCs from 109 HLA-typed subjects were stimulated with predicted 9-11mer CD8 + T cell epitopes from P. falciparum circumsporozoite protein (CSP), apical membrane antigen 1 (AMA1), thrombospondin related anonymous protein (TRAP) and cell traversal for ookinetes and sporozoites (CelTOS) in FluoroSpot assays. A total of 135 epitopes out of 297 tested peptides from the four antigens were experimentally identified as positive for IFN-γ and/or granzyme B production in 65 of the 109 subjects. Forty-three of 135 epitopes (32 %) were promiscuous for HLA binding, with 31 of these promiscuous epitopes (72 %) being presented by HLA alleles that fall within at least two different HLA supertypes. Furthermore, about 52 % of identified epitopes were conserved when the respective sequences were aligned with those from 16 highly diverse P. falciparum parasite strains. In summary, we have identified a number of conserved epitopes, immune responses to which could be effective against multiple P. falciparum parasite strains in genetically diverse populations.


Subject(s)
Malaria Vaccines , Malaria , Adult , Humans , Granzymes , Epitopes, T-Lymphocyte , Protozoan Proteins , Plasmodium falciparum , Leukocytes, Mononuclear , Antigens, Protozoan , Peptides , Biomarkers
2.
PLoS One ; 17(10): e0276241, 2022.
Article in English | MEDLINE | ID: mdl-36251675

ABSTRACT

Class I- and Class II-restricted epitopes have been identified across the SARS-CoV-2 structural proteome. Vaccine-induced and post-infection SARS-CoV-2 T-cell responses are associated with COVID-19 recovery and protection, but the precise role of T-cell responses remains unclear, and how post-infection vaccination ('hybrid immunity') further augments this immunity To accomplish these goals, we studied healthy adult healthcare workers who were (a) uninfected and unvaccinated (n = 12), (b) uninfected and vaccinated with Pfizer-BioNTech BNT162b2 vaccine (2 doses n = 177, one dose n = 1) or Moderna mRNA-1273 vaccine (one dose, n = 1), and (c) previously infected with SARS-CoV-2 and vaccinated (BNT162b2, two doses, n = 6, one dose n = 1; mRNA-1273 two doses, n = 1). Infection status was determined by repeated PCR testing of participants. We used FluoroSpot Interferon-gamma (IFN-γ) and Interleukin-2 (IL-2) assays, using subpools of 15-mer peptides covering the S (10 subpools), N (4 subpools) and M (2 subpools) proteins. Responses were expressed as frequencies (percent positive responders) and magnitudes (spot forming cells/106 cytokine-producing peripheral blood mononuclear cells [PBMCs]). Almost all vaccinated participants with no prior infection exhibited IFN-γ, IL-2 and IFN-γ+IL2 responses to S glycoprotein subpools (89%, 93% and 27%, respectively) mainly directed to the S2 subunit and were more robust than responses to the N or M subpools. However, in previously infected and vaccinated participants IFN-γ, IL-2 and IFN-γ+IL2 responses to S subpools (100%, 100%, 88%) were substantially higher than vaccinated participants with no prior infection and were broader and directed against nine of the 10 S glycoprotein subpools spanning the S1 and S2 subunits, and all the N and M subpools. 50% of uninfected and unvaccinated individuals had IFN-γ but not IL2 or IFN-γ+IL2 responses against one S and one M subpools that were not increased after vaccination of uninfected or SARS-CoV-2-infected participants. Summed IFN-γ, IL-2, and IFN-γ+IL2 responses to S correlated with IgG responses to the S glycoprotein. These studies demonstrated that vaccinations with BNT162b2 or mRNA-1273 results in T cell-specific responses primarily against epitopes in the S2 subunit of the S glycoprotein, and that individuals that are vaccinated after SARS-CoV-2 infection develop broader and greater T cell responses to S1 and S2 subunits as well as the N and M proteins.


Subject(s)
COVID-19 , Interferon-gamma , Interleukin-2 , Adult , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Epitopes , Immunoglobulin G , Interferon-gamma/immunology , Interleukin-2/immunology , Leukocytes, Mononuclear , Proteome , SARS-CoV-2 , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...