Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(26): e2310674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581239

ABSTRACT

Organic semiconductors provide the potential of biodegradable technologies, but prototypes do only rarely exist. Transparent, ultrathin programmable luminescent tags (PLTs) are presented for minimalistic yet efficient information storage that are fully made from biodegradable or at least industrially compostable, ready-to-use materials (bioPLTs). As natural emitters, the quinoline alkaloids show sufficient room temperature phosphorescence when being embedded in polymer matrices with cinchonine exhibiting superior performance. Polylactic acid provides a solution for both the matrix material and the flexible substrate. Room temperature phosphorescence can be locally controlled by the oxygen concentration in the film by using Exceval as additional oxygen blocking layers. These bioPLTs exhibit all function-defining characteristics also found in their regular nonenvironmentally degradable analogs and, additionally, provide a simplified, high-contrast readout under continuous-wave illumination as a consequence of the unique luminescence properties of the natural emitter cinchonine. Limitations for flexible devices arise from limited thermal stability of the polylactic acid foil used as substrate allowing only for one writing cycle and preventing an annealing step during fabrication. Few-cycle reprogramming is possible when using the architecture of the bioPLTs on regular quartz substrates. This work realizes the versatile platform of PLTs with less harmful materials offering more sustainable use in future.

2.
Sci Rep ; 14(1): 5826, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461364

ABSTRACT

Oxygen diffusion properties in thin polymer films are key parameters in industrial applications from food packaging, over medical encapsulation to organic semiconductor devices and have been continuously investigated in recent decades. The established methods have in common that they require complex pressure-sensitive setups or vacuum technology and usually do not come without surface effects. In contrast, this work provides a low-cost, precise and reliable method to determine the oxygen diffusion coefficient D in bulk polymer films based on tracking the phosphorescent pattern of a programmable luminescent tag over time. Our method exploits two-dimensional image analysis of oxygen-quenched organic room-temperature phosphors in a host polymer with high spatial accuracy. It avoids interface effects and accounts for the photoconsumption of oxygen. As a role model, the diffusion coefficients of polystyrene glasses with molecular weights between 13k and 350k g/mol are determined to be in the range of (0.8-1.5) × 10-7 cm2/s, which is in good agreement with previously reported values. We finally demonstrate the reduction of the oxygen diffusion coefficient in polystyrene by one quarter upon annealing above its glass transition temperature.

3.
Adv Mater ; 34(38): e2205015, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35924776

ABSTRACT

Wavelength-discriminating systems typically consist of heavy benchtop-based instruments, comprising diffractive optics, moving parts, and adjacent detectors. For simple wavelength measurements, such as lab-on-chip light source calibration or laser wavelength tracking, which do not require polychromatic analysis and cannot handle bulky spectroscopy instruments, lightweight, easy-to-process, and flexible single-pixel devices are attracting increasing attention. Here, a device is proposed for monotonously transforming wavelength information into the time domain with room-temperature phosphorescence at the heart of its functionality, which demonstrates a resolution down to 1 nm and below. It is solution-processed from a single host-guest system comprising organic room-temperature phosphors and colloidal quantum dots. The share of excited triplet states within the photoluminescent layer is dependent on the excitation wavelength and determines the afterglow intensity of the film, which is tracked by a simple photodetector. Finally, an all-organic thin-film wavelength sensor and two applications are demonstrated where this novel measurement concept successfully replaces a full spectrometer.

4.
Adv Sci (Weinh) ; 8(23): e2102104, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34708588

ABSTRACT

Most materials recently developed for room temperature phosphorescence (RTP) lack in practical relevance due to their inconvenient crystalline morphology. Using amorphous material systems instead, programmable luminescent tags (PLTs) based on organic biluminescent emitter molecules with easy processing and smooth sample shapes are presented recently. Here, the effective quenching of the emitter's RTP by molecular oxygen (O2 ) and the consumption of the excited singlet O2 through a chemical reaction represent the central features. With customized activation schemes, high-resolution content can be written and later erased multiple times into such films, providing a versatile yet simple photonic platform for information storage. However, two important limitations remain: The immutable fluorescence of the emitters outshines the phosphorescent patterns by roughly one order of magnitude, allowing readout of the PLTs only after the excitation source is turned off. The programming of these systems is a rather slow process, where lowest reported activation times are still >8 s. Here, a material-focused approach to PLTs with fast activation times of 120 ± 20 ms and high-contrast under continuous-wave illumination is demonstrated, leading to accelerated programming on industry relevant time scales and a simplified readout process both by eye and low cost cameras.

5.
Adv Mater ; 32(19): e2000880, 2020 May.
Article in English | MEDLINE | ID: mdl-32239561

ABSTRACT

In recent years, there has been a growing interest in purely organic materials showing ultralong room-temperature phosphorescence with lifetimes in the range of seconds. Still, the longest known phosphorescence lifetimes are only achieved with crystalline systems so far. Here, a rational design of a completely new family of halogen-free organic luminescent derivatives in amorphous matrices, displaying both conventional fluorescence and phosphorescence is reported. Hydrogen bonding between the newly developed emitters and an ethylene-vinyl alcohol copolymer (Exceval) matrix, which efficiently suppresses vibrational dissipation, enables bright long-lived phosphorescence with lifetimes up to 2.6 s at around 480 nm. The importance of the chosen matrix is shown as well as the implementation in an organic programmable luminescent tag.

6.
J Phys Chem C Nanomater Interfaces ; 121(27): 14946-14953, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-31303904

ABSTRACT

Biluminescent organic emitters show simultaneous fluorescence and phosphorescence at room temperature. So far, the optimization of the room-temperature phosphorescence in these materials has drawn the attention of research. However, the continuous-wave operation of these emitters will consequently turn them into systems with vastly imbalanced singlet and triplet populations, which is due to the respective excited-state lifetimes. This study reports on the exciton dynamics of the biluminophore NPB (N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1-biphenyl)-4,4-diamine). In the extreme case, the singlet and triplet exciton lifetimes stretch from 3 ns to 300 ms, respectively. Through sample engineering and oxygen quenching experiments, the triplet exciton density can be controlled over several orders of magnitude, allowing us to study exciton interactions between singlet and triplet manifolds. The results show that singlet-triplet annihilation reduces the overall biluminescence efficiency already at moderate excitation levels. Additionally, the presented system represents an illustrative role model to study excitonic effects in organic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...