Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 174(18): 2984-2999, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28616863

ABSTRACT

BACKGROUND AND PURPOSE: Ca2+ -activated Cl- channels (CaCCs) are gated open by a rise in intracellular Ca2+ concentration ([Ca2+ ]i ), typically provoked by activation of Gq -protein coupled receptors (Gq PCR). Gq PCR activation initiates depletion of plasmalemmal phosphatidylinositol 4,5-bisphosphate (PIP2 ). Here, we determined whether PIP2 acts as a signalling lipid for CaCCs coded by the TMEM16A and TMEM16B genes. EXPERIMENTAL APPROACH: Patch-clamp electrophysiology, in conjunction with genetically encoded systems to control cellular PIP2 content, was used to define the mechanism of action of PIP2 on TMEM16A and TMEM16B channels. KEY RESULTS: A water-soluble PIP2 analogue (diC8-PIP2 ) activated TMEM16A channels by up to fivefold and inhibited TMEM16B by ~0.2-fold. The effects of diC8-PIP2 on TMEM16A currents were especially pronounced at low [Ca2+ ]i . In contrast, diC8-PIP2 modulation of TMEM16B channels did not vary over a broad [Ca2+ ]i range but was only detectable at highly depolarized membrane potentials. Modulation of TMEM16A and TMEM16B currents was due to changes in channel gating, while single channel conductance was unaltered. Co-expression of TMEM16A or TMEM16B with a Danio rerio voltage-sensitive phosphatase (DrVSP), which degrades PIP2 , led to reduction and enhancement of TMEM16A and TMEM16B currents respectively. These effects were abolished by an inactivating mutation in DrVSP and antagonized by simultaneous co-expression of a phosphatidylinositol-4-phosphate 5-kinase that catalyses PIP2 formation. CONCLUSIONS AND IMPLICATIONS: PIP2 acts as a modifier of TMEM16A and TMEM16B channel gating. Drugs interacting with PIP2 signalling may affect TMEM16A and TMEM16B channel gating and have potential uses in basic science and implications for therapy.


Subject(s)
Anoctamin-1/metabolism , Anoctamins/antagonists & inhibitors , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Animals , Anoctamins/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Mice , Phosphatidylinositol 4,5-Diphosphate/chemistry , Structure-Activity Relationship
2.
J Physiol ; 594(11): 2785-6, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27246546
3.
J Biol Chem ; 290(2): 889-903, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25425649

ABSTRACT

The calcium-activated chloride channel ANO1 regulates multiple physiological processes. However, little is known about the mechanism of channel gating and regulation of ANO1 activity. Using a high-throughput, random mutagenesis-based variomics screen, we generated and functionally characterized ∼6000 ANO1 mutants and identified novel mutations that affected channel activity, intracellular trafficking, or localization of ANO1. Mutations such as S741T increased ANO1 calcium sensitivity and rendered ANO1 calcium gating voltage-independent, demonstrating a critical role of the re-entrant loop in coupling calcium and voltage sensitivity of ANO1 and hence in regulating ANO1 activation. Our data present the first unbiased and comprehensive study of the structure-function relationship of ANO1. The novel ANO1 mutants reported have diverse functional characteristics, providing new tools to study ANO1 function in biological systems, paving the path for a better understanding of the function of ANO1 and its role in health and diseases.


Subject(s)
Chloride Channels/metabolism , Ion Channels/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Structure-Activity Relationship , Animals , Anoctamin-1 , CHO Cells , Chloride Channels/chemistry , Chloride Channels/genetics , Cricetulus , HEK293 Cells , Humans , Ion Channels/chemistry , Ion Channels/genetics , Mutagenesis, Site-Directed , Neoplasm Proteins/genetics , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...