Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
J Androl ; 22(6): 944-52, 2001.
Article in English | MEDLINE | ID: mdl-11700858

ABSTRACT

Members of the Notch gene family have been shown to play an important role in the control of cell fate in many developmental systems. We hypothesized that the fate of the male germ line stem cells may also be mediated through the Notch signaling pathway. We therefore sought to determine whether the components of the Notch pathway are expressed in the mouse testis. Western blot analysis revealed the expression of three Notch receptors (Notch 1, Notch 2, and Notch 3), Notch ligands (Jagged 1, Jagged 2, and Delta 1), and presenilin 1 (PS1) in neonatal mouse testis. We then examined their cellular localization by immunohistochemical analysis of cocultures of spermatogonia and Sertoli cells. The 3 Notch receptors were found to be expressed in spermatogonia. Sertoli cells expressed only Notch 2 receptor. Among the Notch ligands, Delta 1 and Jagged 1 were localized exclusively in spermatogonia and Sertoli cells, respectively. PS1 was apparent in both spermatogonia and Sertoli cells. The presence of Notch receptors and Notch ligands in spermatogonia and Sertoli cells indicates that these cells are capable of responding to and eliciting Notch signaling during the process of spermatogenesis. Key words: Cell fate, delta, jagged, presenilin, spermatogenesis.


Subject(s)
Proto-Oncogene Proteins/genetics , Sertoli Cells/cytology , Spermatogenesis/genetics , Transcription Factors , Animals , Animals, Newborn , Blotting, Western , Cell Culture Techniques/methods , Cells, Cultured , Gene Expression Regulation, Developmental , Male , Membrane Proteins/analysis , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Presenilin-1 , Proto-Oncogene Proteins/analysis , Receptor, Notch1 , Receptor, Notch2 , Receptor, Notch4 , Receptors, Cell Surface/genetics , Receptors, Notch , Sertoli Cells/physiology , Testis/physiology
2.
Biol Reprod ; 63(2): 591-8, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10906069

ABSTRACT

Telomeres, the noncoding sequences at the ends of chromosomes, progressively shorten with each cellular division. Spermatozoa have very long telomeres but they lack telomerase enzymatic activity that is necessary for de novo synthesis and addition of telomeres. We performed a telomere restriction fragment analysis to compare the telomere lengths in immature rat testis (containing type A spermatogonia) with adult rat testis (containing more differentiated germ cells). Mean telomere length in the immature testis was significantly shorter in comparison to adult testis, suggesting that type A spermatogonia probably have shorter telomeres than more differentiated germ cells. Then, we isolated type A spermatogonia from immature testis, and pachytene spermatocytes and round spermatids from adult testis. Pachytene spermatocytes exhibited longer telomeres compared to type A spermatogonia. Surprisingly, although statistically not significant, round spermatids showed a decrease in telomere length. Epididymal spermatozoa exhibited the longest mean telomere length. In marked contrast, telomerase activity, measured by the telomeric repeat amplification protocol was very high in type A spermatogonia, decreased in pachytene spermatocytes and round spermatids, and was totally absent in epididymal spermatozoa. In summary, these results indicate that telomere length increases during the development of male germ cells from spermatogonia to spermatozoa and is inversely correlated with the expression of telomerase activity.


Subject(s)
Spermatogenesis , Spermatozoa/enzymology , Spermatozoa/ultrastructure , Telomerase/metabolism , Telomere/ultrastructure , Aging , Animals , Cell Differentiation , Epididymis/ultrastructure , Male , Rats , Rats, Sprague-Dawley , Spermatids/enzymology , Spermatids/ultrastructure , Spermatogonia/enzymology , Spermatogonia/ultrastructure , Testis/enzymology , Testis/growth & development , Testis/ultrastructure
3.
Gen Comp Endocrinol ; 105(3): 323-32, 1997 Mar.
Article in English | MEDLINE | ID: mdl-9073494

ABSTRACT

The expression of the neuropeptide galanin was analyzed by immunohistochemistry in magnocellular and preoptic hypothalamic neurons of toads following hypophysectomy (HPX) and pars distalectomy (PDX). There was a marked increase in the galanin-like immunoreactive expression in magnocellular hypothalamic cells 3 days after HPX, followed by a decrease to normal levels after 7 days. No changes in the expression of galanin were detected after PDX in these neurons when compared to controls. Moreover, 7 days after HPX or PDX the number of cells expressing galanin was significantly increased in the preoptic area, where numerous intraependymal cells were intensely immunoreactive. The hypophysis grafts into the hind limb in HPX or PDX animals prevented increased galanin-like immunoreactivity in preoptic cells but not in magnocellular neurons. Similarly, PDX toads given growth hormone showed no GAL-LI in the intraependymal preoptic cells. These results suggest the presence of a region regulation of galanin expression in the preoptic area by hypophyseal hormones, in particular growth hormone.


Subject(s)
Bufo arenarum , Galanin/metabolism , Growth Hormone/pharmacology , Hypophysectomy , Hypothalamus/drug effects , Hypothalamus/metabolism , Animals , Male , Neurons/metabolism , Preoptic Area/metabolism
4.
Biocell ; 19(2): 95-111, 1995 Aug.
Article in English | MEDLINE | ID: mdl-7550577

ABSTRACT

The distribution of galanin (GAL)-like immunoreactivity (-LI) was studied in the CNS of the toad (Bufo arenarum Hensel). Tissue sections were incubated with antibodies directed toward rat or porcine GAL and processed either for the avidin-biotin complex, or for the indirect immunofluorescence techniques. In the telencephalon GAL-immunoreactive (-IR) perikarya were observed in the ventral part of the striatum and in the septal accumbens nuclei. Immunopositive neurons were also observed in the medial amigdala with some intermingled cells between the fibers of the anterior commissure. Numerous GAL-IR perikarya were present along the rostrocaudal medial preoptic nucleus. Occasionally lightly immunoreactive cells were detected in the magnocellular region. The most numerous accumulation of GAL-IR cells was present in the ventral hypothalamus around the infundibular region, in the posterior tubercle and in the nucleus of the paraventricular organ. Immunostained cells were also present in the pretectal gray, solitary nucleus, gracil nucleus and in the spinal cord in the intermediate gray and in large motoneurons of the ventral horn. The widespread distribution found of GAL-LI suggests that GAL in the toad, as well as in mammalian species, may serve a variety of functions with a preponderant role in neuroendocrine processes. A role for GAL as a trophic factor in the brain of the toad is also suggested.


Subject(s)
Brain/metabolism , Bufonidae/metabolism , Galanin/metabolism , Animals , Brain Mapping , Galanin/immunology , Immunologic Techniques , Male , Neurons/metabolism
5.
Cell Tissue Res ; 281(2): 375-8, 1995 Aug.
Article in English | MEDLINE | ID: mdl-7648631

ABSTRACT

The presence and distribution of peptidergic nerve fibers were studied in the testis and mesorchium of the toad by means of immunohistochemistry. Cryostat sections of the testis and whole-mount preparations of mesorchia were immunostained with antisera to calcitonin gene-related peptide (CGRP) and neuropeptide tyrosine (NPY). After leaving the mesorchium CGRP-immunoreactive (IR) fibers were seen predominantly running in between the seminiferous tubules. In addition, a small population of CGRP-IR nerve fibers formed thin plexuses around blood vessels. Conversely, NPY-like immunoreactivity predominated in nerve fibers that formed dense plexuses around vessels both in the mesorchium and testis. Additionally, some single NPY-IR nerve fibers could be seen in both structures studied. The functional significance of these peptidergic systems in the testis of the toad remains to be analyzed.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Nerve Fibers/metabolism , Neuropeptide Y/metabolism , Testis/innervation , Animals , Bufo arenarum , Calcitonin Gene-Related Peptide/immunology , Kidney/innervation , Kidney/metabolism , Male , Mesentery/innervation , Mesentery/metabolism , Mesentery/ultrastructure , Nerve Fibers/ultrastructure , Neuropeptide Y/immunology , Testis/metabolism , Testis/ultrastructure
6.
Biocell ; 19(2): 95-111, Aug. 1995.
Article in English | LILACS | ID: lil-336013

ABSTRACT

The distribution of galanin (GAL)-like immunoreactivity (-LI) was studied in the CNS of the toad (Bufo arenarum Hensel). Tissue sections were incubated with antibodies directed toward rat or porcine GAL and processed either for the avidin-biotin complex, or for the indirect immunofluorescence techniques. In the telencephalon GAL-immunoreactive (-IR) perikarya were observed in the ventral part of the striatum and in the septal accumbens nuclei. Immunopositive neurons were also observed in the medial amigdala with some intermingled cells between the fibers of the anterior commissure. Numerous GAL-IR perikarya were present along the rostrocaudal medial preoptic nucleus. Occasionally lightly immunoreactive cells were detected in the magnocellular region. The most numerous accumulation of GAL-IR cells was present in the ventral hypothalamus around the infundibular region, in the posterior tubercle and in the nucleus of the paraventricular organ. Immunostained cells were also present in the pretectal gray, solitary nucleus, gracil nucleus and in the spinal cord in the intermediate gray and in large motoneurons of the ventral horn. The widespread distribution found of GAL-LI suggests that GAL in the toad, as well as in mammalian species, may serve a variety of functions with a preponderant role in neuroendocrine processes. A role for GAL as a trophic factor in the brain of the toad is also suggested.


Subject(s)
Animals , Male , Bufonidae , Cerebrum , Galanin , Brain Mapping , Galanin , Immunologic Techniques , Neurons/metabolism
7.
Biocell ; 19(2): 95-111, Aug. 1995.
Article in English | BINACIS | ID: bin-6334

ABSTRACT

The distribution of galanin (GAL)-like immunoreactivity (-LI) was studied in the CNS of the toad (Bufo arenarum Hensel). Tissue sections were incubated with antibodies directed toward rat or porcine GAL and processed either for the avidin-biotin complex, or for the indirect immunofluorescence techniques. In the telencephalon GAL-immunoreactive (-IR) perikarya were observed in the ventral part of the striatum and in the septal accumbens nuclei. Immunopositive neurons were also observed in the medial amigdala with some intermingled cells between the fibers of the anterior commissure. Numerous GAL-IR perikarya were present along the rostrocaudal medial preoptic nucleus. Occasionally lightly immunoreactive cells were detected in the magnocellular region. The most numerous accumulation of GAL-IR cells was present in the ventral hypothalamus around the infundibular region, in the posterior tubercle and in the nucleus of the paraventricular organ. Immunostained cells were also present in the pretectal gray, solitary nucleus, gracil nucleus and in the spinal cord in the intermediate gray and in large motoneurons of the ventral horn. The widespread distribution found of GAL-LI suggests that GAL in the toad, as well as in mammalian species, may serve a variety of functions with a preponderant role in neuroendocrine processes. A role for GAL as a trophic factor in the brain of the toad is also suggested.(AU)


Subject(s)
Animals , Male , RESEARCH SUPPORT, NON-U.S. GOVT , Cerebrum/metabolism , Bufonidae/metabolism , Galanin/metabolism , Brain Mapping , Galanin/immunology , Immunologic Techniques , Neurons/metabolism
8.
Biocell ; 19(2): 95-111, 1995 Aug.
Article in English | BINACIS | ID: bin-37281

ABSTRACT

The distribution of galanin (GAL)-like immunoreactivity (-LI) was studied in the CNS of the toad (Bufo arenarum Hensel). Tissue sections were incubated with antibodies directed toward rat or porcine GAL and processed either for the avidin-biotin complex, or for the indirect immunofluorescence techniques. In the telencephalon GAL-immunoreactive (-IR) perikarya were observed in the ventral part of the striatum and in the septal accumbens nuclei. Immunopositive neurons were also observed in the medial amigdala with some intermingled cells between the fibers of the anterior commissure. Numerous GAL-IR perikarya were present along the rostrocaudal medial preoptic nucleus. Occasionally lightly immunoreactive cells were detected in the magnocellular region. The most numerous accumulation of GAL-IR cells was present in the ventral hypothalamus around the infundibular region, in the posterior tubercle and in the nucleus of the paraventricular organ. Immunostained cells were also present in the pretectal gray, solitary nucleus, gracil nucleus and in the spinal cord in the intermediate gray and in large motoneurons of the ventral horn. The widespread distribution found of GAL-LI suggests that GAL in the toad, as well as in mammalian species, may serve a variety of functions with a preponderant role in neuroendocrine processes. A role for GAL as a trophic factor in the brain of the toad is also suggested.

SELECTION OF CITATIONS
SEARCH DETAIL
...