Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(24): 5432-5444, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37289558

ABSTRACT

Anthocyanins are the main active compounds in blueberry. However, they have poor oxidation stability. If anthocyanins are encapsulated in protein nanoparticles, their oxidation resistance could be increased as a result of the slowing down of the oxidation process. This work describes the advantages of using a γ-irradiated bovine serum albumin nanoparticle bound to anthocyanins. The interaction was characterized biophysically, mainly by rheology. By computational calculation and simulation based on model nanoparticles, we estimated the number of molecules forming the albumin nanoparticles, which allowed us to infer the ratio of anthocyanin/nanoparticles. Measurements by UV-vis spectroscopy, FTIR spectroscopy, fluorescence spectroscopy, dynamic light scattering (DLS), ζ potential, electron transmission microscopy, and rheology at room (25 °C) and physiological (37 °C) temperatures were performed. The spectroscopy measurements allowed identifying additional hydrophobic sites created during the irradiation process of the nanoparticle. On the basis of the rheological studies, it was observed that the BSA-NP trend is a Newtonian flow behavior type for all the temperatures selected, and there is a direct correlation between dynamic viscosity and temperature values. Furthermore, when anthocyanins are added, the system increases its resistance to the flow as reflected in the morphological changes observed by TEM, thus confirming the relationship between viscosity values and aggregate formation.


Subject(s)
Anthocyanins , Nanoparticles , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Spectrometry, Fluorescence , Oxidation-Reduction
2.
J Photochem Photobiol B ; 234: 112510, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36049287

ABSTRACT

Each year a rising number of infections can not be successfully treated owing to the increasing pandemic of antibiotic resistant pathogens. The global shortage of innovative antibiotics fuels the emergence and spread of drug resistant microbes. Basic research, development, and applications of alternative therapies are urgently needed. Since the 90´s, light-mediated therapies have promised to be the next frontier combating multidrug-resistance microbes. These platforms have demonstrated to be a reliable, rapid, and efficient alternative to eliminate tenacious pathogens while avoiding the emergence of resistance mechanisms. Among the materials showing antimicrobial activity triggered by light, conjugated polymers (CPs) have risen as the most promising option to tackle this complex situation. These materials present outstanding characteristics such as high absorption coefficients, great photostability, easy processability, low cytotoxicity, among others, turning them into a powerful class of photosensitizer (PS)/photothermal agent (PTA) materials. Herein, we summarize and discuss the advances in the field of CPs with applications in photodynamic inactivation and photothermal therapy towards bacteria elimination. Additionally, a section of current challenges and needs in terms of well-defined benchmark experiments and conditions to evaluate the efficiency of phototherapies is presented.


Subject(s)
Photochemotherapy , Polymers , Anti-Bacterial Agents , Bacteria , Photosensitizing Agents/pharmacology , Phototherapy , Polymers/pharmacology
3.
Mater Sci Eng C Mater Biol Appl ; 103: 109813, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349435

ABSTRACT

A γ-irradiated bovine albumin serum-based nanoparticle was characterised structurally, and functionally. The nanoparticle was characterised by A.F.M., D.L.S, zeta potential, T.E.M., gel-electrophoresis, and spectroscopy. We studied the stability of the nanoparticle at different pH values and against time, by fluorescence spectroscopy following the changes in the tryptophan environment in the nanoparticle. The nanoparticle was also functionalized with Folic Acid, its function as a nanovehicle was evaluated through its interaction with the hydrophobic drug Emodin. The binding and kinetic properties of the obtained complex were evaluated by biophysical methods as well as its toxicity in tumor cells. According to its biophysics, the nanoparticle is a spherical nanosized vehicle with a hydrodynamic diameter of 70 nm. Data obtained describe the nanoparticle as nontoxic for cancer cell lines. When combined with Emodin, the nanoparticle proved to be more active on MCF-7 cancer cell lines than the nanoparticle without Emodin. Significantly, the albumin aggregate preserves the main activity-function of albumin and improved characteristics as an excellent carrier of molecules. More than carrier properties, the nanoparticle alone induced an immune response in macrophages which may be advantageous in vaccine and cancer therapy formulation.


Subject(s)
Drug Carriers/chemistry , Emodin/administration & dosage , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Animals , Drug Delivery Systems , Emodin/pharmacology , Folic Acid/chemistry , Gamma Rays , Humans , Hydrogen-Ion Concentration , MCF-7 Cells , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Microscopy, Atomic Force , Microscopy, Electron, Transmission , NF-kappa B/metabolism , Nanoparticles/toxicity , Serum Albumin, Bovine/pharmacology , Serum Albumin, Bovine/toxicity , Spectrometry, Fluorescence
4.
Curr Pharm Des ; 23(35): 5272-5282, 2017.
Article in English | MEDLINE | ID: mdl-28619004

ABSTRACT

Albumin polymeric Nanoparticles (NPs) have opened a great expectancy as for controlled drug delivery due to their therapeutic potency. Concomitantly biodegradable NPs technologies with target linked structures to pave the way of personalised medicine are becoming increasingly important in sight of a therapeutically effective research technology. This is particularly attractive for nanoparticle-based cancer delivery systems, based on the known limitations and efforts to overcome. This new group of gamma irradiated-NPs inherited both the protein delivery properties and robustness of polymer forming structures, and gamma irradiation techniques that leave clean, innocuous and biodegradable NPs. These protein NPs made of serum albumin are referred to SA NPs that possesses several characteristics making them especially attractive to be considered as a drug delivery system. This review focused on methodologies actually being used in the synthesis and characterisation of albumin NPs and different author's opinions on strategic ways to treat cancerous cell-lines with NPs. Utterly, challenges being overthrown by researchers are brought up to anneal an effective, all in one targeted albumin NPs to passed through in vitro and preclinical trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Drug Carriers/administration & dosage , Gamma Rays , Nanoparticles/administration & dosage , Neoplasms/drug therapy , Serum Albumin/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/radiation effects , Antineoplastic Combined Chemotherapy Protocols/radiation effects , Cell Line, Tumor , Drug Carriers/chemistry , Drug Carriers/radiation effects , Gamma Rays/therapeutic use , Humans , Nanoparticles/chemistry , Nanoparticles/radiation effects , Neoplasms/metabolism , Serum Albumin/chemistry , Serum Albumin/radiation effects
5.
J Mol Recognit ; 27(11): 659-68, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25277090

ABSTRACT

Fusion of peptide-based tags to recombinant proteins is currently one of the most used tools for protein production. Also, immobilized metal ion affinity chromatography (IMAC) has a huge application in protein purification, especially in research labs. The combination of expression systems of recombinant tagged proteins with this robust chromatographic system has become an efficient and rapid tool to produce milligram-range amounts of proteins. IMAC-Ni(II) columns have become the natural partners of 6xHis-tagged proteins. The Ni(II) ion is considered as the best compromise of selectivity and affinity for purification of a recombinant His-tagged protein. The palladium(II) ion is also able to bind to side chains of amino acids and form ternary complexes with iminodiacetic acid and free amino acids and other sulfur-containing molecules. In this work, we evaluated two different cysteine- and histidine-containing six amino acid tags linked to the N-terminal group of green fluorescent protein (GFP) and studied the adsorption and elution conditions using novel eluents. Both cysteine-containing tagged GFPs were able to bind to IMAC-Pd(II) matrices and eluted successfully using a low concentration of thiourea solution. The IMAC-Ni(II) system reaches less than 20% recovery of the cysteine-containing tagged GFP from a crude homogenate of recombinant Escherichia coli, meanwhile the IMAC-Pd(II) yields a recovery of 45% with a purification factor of 13.


Subject(s)
Chromatography, Affinity/methods , Cysteine/chemistry , Green Fluorescent Proteins/isolation & purification , Histidine/chemistry , Palladium/chemistry , Peptide Fragments/chemistry , Recombinant Proteins/isolation & purification , Cysteine/metabolism , Escherichia coli , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Histidine/metabolism , Humans , Palladium/metabolism , Peptide Fragments/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...