Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37862514

ABSTRACT

We report on the design, construction, and testing of a high-speed rotor intended for use in hypervelocity microparticle impact studies. The rotor is based on a four-wing design to provide rotational stability and includes flat "paddle" impact surfaces of ∼0.5 cm2 at the tips of each wing. The profile of each wing minimizes the variation in tensile forces at any given rotational speed. The rotor was machined using titanium (grade 5) and operated in high vacuum using magnetically levitated bearings. Initial experiments were run at several speeds up to 100 000 rpm (revolutions per minute), corresponding to a tip speed of 670 m/s. Elongation at the wing tips as a function of rotational speed was measured with a precision of several micrometers using a focused diode laser and found to agree with an elastic modulus of 1.16 GPa for the rotor material. Applications to microparticle impact experiments are discussed.

2.
Rev Sci Instrum ; 93(8): 085105, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050048

ABSTRACT

We present an in-vacuum mechanical chopper running at high speed and integrated into a magnetic levitating motor for modulating optical beams up to 200 kHz. The compact chopper rotor allows fast acceleration (10 kHz s-1 as standard) for rapid tuning of the modulation frequency, while 1 mm diameter slots provide high optical throughput for larger infrared beams. The modulation performances are assessed using a reference visible laser and the high brightness, broadband, infrared (IR) beam of synchrotron radiation at the MIRIAM beamline B22 at Diamond Light Source, UK. For our application of IR nanospectroscopy, minimizing the temporal jitter on the modulated beam due to chopper manufacturing and control tolerances is essential to limit the noise level in measurements via lock-in detection, while high modulation frequencies are needed to achieve high spatial resolution in photothermal nanospectroscopy. When reaching the maximum chopping frequency of 200 kHz, the jitter was found to be 0.9% peak-to-peak. The described chopper now replaces the standard ball-bearing chopper in our synchrotron-based FTIR photothermal nanospectroscopy system, and we demonstrate improved spectroscopy results on a 200 nm thickness polymer film.

3.
Rev Sci Instrum ; 89(6): 063110, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29960529

ABSTRACT

Compact, ultra-high-speed self-bearing permanent-magnet motors enable a wide scope of applications including an increasing number of optical ones. For implementation in an optical setup, the rotors have to satisfy high demands regarding their velocity and pointing errors. Only a restricted number of measurements of these parameters exist and only at relatively low velocities. This manuscript presents the measurement of the velocity and pointing errors at rotation frequencies up to 5 kHz. The acquired data allow us to identify the rotor drive as the main source of velocity variations with fast fluctuations of up to 3.4 ns (RMS) and slow drifts of 23 ns (RMS) over ∼120 revolutions at 5 kHz in vacuum. At the same rotation frequency, the pointing fluctuated by 12 µrad (RMS) and 33 µrad (peak-to-peak) over ∼10 000 round trips. To our best knowledge, this states the first measurement of velocity and pointing errors at multi-kHz rotation frequencies and will allow potential adopters to evaluate the feasibility of such rotor drives for their application.

SELECTION OF CITATIONS
SEARCH DETAIL
...