Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Parasitol ; 99(2): 57-65, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11748958

ABSTRACT

Chondroitin 4-sulfate (C4S) is known to mediate the adherence of Plasmodium falciparum infected red blood cells (IRBCs) to human placenta. Recently, hyaluronic acid (HA) has also been reported to bind IRBCs, and HA has been suggested as an additional receptor for the sequestration of IRBCs in the placenta. In this study, we assessed the adherence of 3D7 parasite strain, which has been reported to bind both C4S and HA, using highly purified clinical grade rooster comb HA, Streptococcus HA, several preparations of human umbilical cord HA (hucHA), and bovine vitreous humor HA (bvhHA). While all hucHA preparations and bvhHA bound with moderate to high density to IRBCs, the rooster comb and bacterial HAs did not bind IRBCs. IRBCs binding to the hucHA and bvhHA could be abolished by pretreatment with testicular hyaluronidase but not with Streptomyces hyalurolyticus hyaluronidase, suggesting that IRBC binding to hucHA and bvhHA was due to chondroitin sulfate (CS) contaminants in HAs. Compositional analysis confirmed the presence of CS in both hucHA and bvhHA. The CSs present in these commercial hucHA and bvhHA samples were isolated, characterized, and studied for their ability to bind IRBCs. The data suggested that IRBC adherence to hucHA and bvhHA was mediated by the CS present in these samples. However, our data did not exclude the possibility of a minor population of distinct parasite subtype adhering to HA and further studies using pure HA conjugated to proteins or lipids and placental parasite isolates should clarify whether HA is an in vivo receptor for IRBC adherence.


Subject(s)
Chondroitin Sulfates/metabolism , Erythrocytes/parasitology , Hyaluronic Acid/metabolism , Placenta/parasitology , Plasmodium falciparum/physiology , Animals , Cattle , Cell Adhesion/physiology , Cells, Cultured , Chickens , Chondroitin Sulfate Proteoglycans/chemistry , Chondroitin Sulfates/isolation & purification , Electrophoresis, Polyacrylamide Gel , Erythrocytes/metabolism , Humans , Hyaluronic Acid/chemistry , Placenta/chemistry , Placenta/metabolism , Umbilical Cord/chemistry
2.
Infect Immun ; 69(12): 7487-92, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11705924

ABSTRACT

During pregnancy, Plasmodium falciparum-infected erythrocytes sequester in the placenta by adhering to chondroitin 4-sulfate, creating a risk factor for both the mother and the fetus. The primigravidae are at higher risk for placental malaria than the multigravidae. This difference in susceptibility has been attributed to the lack of antibodies that block the adhesion of infected erythrocytes to placental chondroitin 4-sulfate in primigravid women. However, recent results show that many primigravidae at term have antibody levels similar to those of multigravidae, and thus the significance of antiadhesion antibodies in providing protection against malaria during pregnancy remains unclear. In this study, we analyzed plasma samples from women of various gravidities at different gestational stages for antiadhesion antibodies. The majority of women, regardless of gravidity, had similar levels of antibodies at term. Most primigravidae had low levels of or no antiadhesion antibodies prior to ~20 weeks of pregnancy and then produced antibodies. Multigravidae also lacked antibodies until ~12 weeks of pregnancy, but thereafter they efficiently produced antibodies. In pregnant women who had placental infection at term, higher levels of antiadhesion antibodies correlated with lower levels of placental parasitemia. The difference in kinetics of antibody production between primigravidae and multigravidae correlated with the prevalence of malaria in these groups, suggesting that antibodies are produced during pregnancy in response to placental infection. The early onset of efficient antibody response in multigravidae and the delayed production to antibodies in primigravidae appear to account for the gravidity-dependent differential susceptibilities of pregnant women to placental malaria.


Subject(s)
Chondroitin Sulfate Proteoglycans/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/parasitology , Placenta/parasitology , Pregnancy Complications, Parasitic/parasitology , Adult , Cell Adhesion , Female , Gestational Age , Gravidity , Humans , Placenta Diseases/parasitology , Pregnancy , Protozoan Proteins
3.
J Biol Chem ; 275(51): 40344-56, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11005814

ABSTRACT

In pregnant women infected with Plasmodium falciparum, the infected red blood cells (IRBCs) selectively accumulate in the intervillous spaces of placenta, leading to poor fetal outcome and severe health complications in the mother. Although chondroitin 4-sulfate is known to mediate IRBC adherence to placenta, the natural receptor has not been identified. In the present study, the chondroitin sulfate proteoglycans (CSPGs) of human placenta were purified and structurally characterized, and adherence of IRBCs to these CSPGs investigated. The data indicate that the placenta contains three distinct types of CSPGs: significant quantities of uniquely low sulfated, extracellular CSPGs localized in the intervillous spaces, minor amounts of two cell-associated CSPGs, and major amounts of dermatan sulfate-like CSPGs of the fibrous tissue. Of the various CSPGs isolated from the placenta, the low sulfated CSPGs of the intervillous spaces most efficiently bind IRBCs. Based on IRBC adherence capacities and localization patterns of various CSPGs, we conclude that the CSPGs of the intervillous spaces are the receptors for placental IRBC adherence. The identification and characterization of these CSPGs provide a valuable tool for understanding the precise molecular interactions involved in placental IRBC adherence and for the development of therapeutic strategies for maternal malaria. In the accompanying paper (Alkhalil, A., Achur, R. N., Valiyaveettil, M., Ockenhouse, C. F., and Gowda, D. C. (2000) J. Biol. Chem. 275, 40357-40364), we report the structural requirements for the IRBC adherence.


Subject(s)
Cell Adhesion , Chondroitin Sulfate Proteoglycans/metabolism , Erythrocytes/parasitology , Placenta/metabolism , Plasmodium falciparum/isolation & purification , Amino Acids/analysis , Animals , Centrifugation , Chondroitin Sulfate Proteoglycans/chemistry , Chondroitin Sulfate Proteoglycans/isolation & purification , Chromatography, Gel , Chromatography, Ion Exchange , Electrophoresis, Polyacrylamide Gel , Female , Humans , Placenta/pathology , Pregnancy , Pregnancy Complications, Parasitic/blood
4.
J Biol Chem ; 275(51): 40357-64, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11005815

ABSTRACT

Plasmodium falciparum infection during pregnancy results in the accumulation of infected red blood cells (IRBCs) in the placenta, leading to poor pregnancy outcome. In the preceding paper (Achur, R. N., Valiyaveettil, M., Alkhalil, A., Ockenhouse, C. F., and Gowda, D. C. (2000) J. Biol. Chem. 275, 40344-40356), we reported that unusually low sulfated chondroitin sulfate proteoglycans (CSPGs) in the intervillous spaces of the placenta mediate the IRBC adherence. In this study, we report the structural requirements for the adherence and the minimum chondroitin 4-sulfate (C4S) structural motif that supports IRBC adherence. Partially sulfated C4Ss with varying sulfate contents were prepared by solvolytic desulfation of a fully sulfated C4S. These and other nonmodified C4Ss, with different proportions of 4-, 6-, and nonsulfated disaccharide repeats, were analyzed for inhibition of IRBC adherence to the placental CSPG. C4Ss containing 30-50% 4-sulfated and 50-70% nonsulfated disaccharide repeats efficiently inhibited IRBC adherence; C6S had no inhibitory activity. Oligosaccharides of varying sizes were prepared by the partial depolymerization of C4Ss containing varying levels of 4-sulfation, and their ability to inhibit the IRBC adherence was studied. Oligosaccharides with six or more disaccharide repeats inhibited IRBC adherence to the same level as that of the intact C4Ss, indicating that a dodecasaccharide is the minimum structural motif required for optimal IRBC adherence. Of the C4S dodecasaccharides, only those with two or three sulfate groups per molecule showed maximum IRBC inhibition. These data define the structural requirements for the IRBC adherence to placental CSPGs with implications for the development of therapeutics for maternal malaria.


Subject(s)
Cell Adhesion , Chondroitin Sulfate Proteoglycans/metabolism , Erythrocytes/parasitology , Placenta/metabolism , Plasmodium falciparum/isolation & purification , Pregnancy Complications, Parasitic/blood , Animals , Chondroitin Sulfate Proteoglycans/chemistry , Female , Humans , Placenta/pathology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL